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ABSTRACT

My research is mainly focused on two parts: research on synthesis of resveratrol
derivatives and the reactivity of photoinduced ketyl group.

Part I: The Research on Synthesis of Resveratrol Derivatives
Resveratrol derivatives has numerous biological activities such as anti-cancer,
anti-bacterial, anti-oxidation, prevent heart disease, anti-mutagenic, good
pharmacological activity. For the content is very low in most plants, and extraction
cost is much higher. It becomes much more important to search for the synthetic
mehtod for preparation of resveratrol.

In this dissertation, we have investigated the synhtetic method and operation
process of resveratrol. According to the designed routine,we synthesized the with
halogenated benzyl alcohol, which undergoes five steps including halogenation,
Arbuzovrearrmnaent, Wittig-Homer reaction and demehtylation. The structures are
confirmed by '"H NMR, MS and IR

Part II: The Research on the Reactivity of Photoinduced ketyl group.

The optimization of photoreaction of photoinduced ketyl group in thiophenes or
ether solvent leading to the formation of a C-C bond to afford B-hydroxyl ethers was
carried out. The irradiation wavelength effect, temperature effect, and amount of
catalyst were examined step by step. selectivity of the reaction, we try to add a Lewis
acid in the reaction as a catalyst, selected from a highly efficient selective catalyst is
added to the Hf(OTY), as a catalyst, and its dehydration product yield can be increased
to 57 %. When the catalyst was added Fe(OTf), , the addition product yield of 69%.
After which the optimized reaction conditions were finalized, and the possible
mechanism was discussed based on the results.

In conclusion, we have developed a photoinduced additive-free intermolecular C-C
bond coupling reaction via direct ethereal C-H bond functionalization with various

aromatic ketones or aldehydes. This reaction provides a simple, atom economical, and



environmentally friendly protocol for the synthesis of f-hydroxyl ethers.

KEYWORDS: Resveratrol; Derivatives; Photochemistry; ketyl group
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Scheme 2-8
Daugulis /N A F PA(OAc) » SEIH T AL e Bl 2 sk A L 11 57 B K g 1] Sp3 filk—
SR, IS mARTT IR AR - TR (1 . R N s eI A R

VU HRRRRAT A1 sp® BR-SURERTR 16 (B 2-9) s
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® (L, W O,

\J

N
_NH H L- Pd—N
CH3CH,Y CH3CH,Y~ v
X=CH2,C=0,aromatic tether Y=C=0,carboxylic acid p-arylation
Y=CH,,amine y—arylation
K% 2-9
Scheme 2-9

Pan Xie 55K T —FlBi AU ALY sp® Bl S0 AL SR o RS B I 4 AF
F A A AT OGRS R B4 T S8 A e, TR s R AT HILS R R 44, el A
RO R AL SN o B3 AR, JEFR DL IRAE O skt 55 5l HITE R
TR HE, NI A S e AR T AR IR (SET) R R IR AE Hh 1]
I, iz AR S CO A AEATN I8 H BR 5 R IS 2K LIRS &,
J e e R KR S Rt vl LA IR 2R (B3 2-10)™
Ry

©/\ Pd(Xantphos)Cl, -'::;?\@/YORS
Rl ~ > R]_L_\
CH,OH o

CO(10atm),120

TBP

PhCH,COOt-Bu t-BuO" )
PhCH,COOEt [Pd] PhCH, PhCH3
t-BuOH
SET
0
PhCH,PdCOt-Bu

PhCHdeCOEt 5\/ PhCHPdOt-Bu
co

EtOH
co PhCH,PdOEt

t-BuOH

K% 2-10
Scheme 2-10
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2.1.2.2 XNBEEBIKRE (CDC)

A X BRI S, B Cross-Dehydrogenative Coupling (CDC), #ltje B #
R AR R SR ) C-H B, R4S N, BEAT I AU I S A T 1k C-C B
AT S A PR 5 I S T 8 R 11 4 S A R B v 1) D R 2R, Sl LB P R
AL SRR T U R AR A LG AT S5 B T — 4 R S R T B o XA J B
FRIBE AN SIS 2 ] — Pl b &2 R A4 F7) (Cus Con In) FI—AME NS SZ AR 4
AT e E LA (TBHP). 2,3- - 540-5,6- & HE-1,4-7KBR(DDQ) L [A4E Ik
SEIL IR FE A

A AN B ORI 2L T RS PR (K sp’ B2 S sp Bl
SR CDC [N, i L34 5 2 I JEe 1) — Tl 3 AN AN [ P Bl — S SR AE A P S5 A
N W SR BB T SRR IR (0 S R o 3 AR RS AR IR A A 77 (B« W) #h55) F %Ak
(A4 K . %<, DDQ %) (% 2-11) ",

c cat.M 3
— + cH —» c-c
7] [O] -
sp
sp?
sp®
K 2-11
Scheme 2-11

FERTHR 73 AU AR AL IR B -V BEVR AL, ZR R ZE /N T A A P T
[t1 DDQ 1A . FREURHIEEAE DDQ 1 F I % # ] 25 B4R 1IE 58 1,
ASAFAIE L1 sp® -0 5 HAb Bl - S E R SR A% R A CDC RN BAT T )
RETE. AR S0 454 LSRR R i, A IR A S R I ik e
InCl3/CuBr/DDQ 44~ AT LAy I —RREEIL [F4EH F & CDC e (3R 2-12)

[40]
o

5mol% InCls
o o 10mol% CuBr o
DDQ _
+ >
Oi]) MeOMOMe CH,Cl,, t, 24h MeO OMe
K% 2-12 0 O
Scheme 2-12

B DRI, R A DDQ IAERR, AR IR I T LURTR A
- CDC Jx o Herh DDQ AA#AT AR LU AR ], s (e i A
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G5 HBEEAE ) SN AT R S I — R IR I S RS R i A B
FLIEE T DDQ H M E T, SR )5 DDQ H H3E 3 1 I IF B 7 HEE —
ANGUE T S (40845 15 25 7R DDQ 48603 1, AR I i 9 28 1 O 3
SESA IE 1B TS BB EAR I ) X RIS CDC s ARG 48 Je AL PR k- U B
B R~ SRR S AT R 55 7 i AR A0 A 25 il 8 b BT R X (B3
1-13)",

RL, e
o) o R
; O CN
cl cl
- H
+ + C CN
Cl Cl )
o | oo
_ o _
RX HO CN

Y OH
3 / Cl CN
R~ R2 d
- Q@
@] Cl CN
K% 2-13 OH
Scheme 2-13

25 BT /N R B DY S A8 4 i (o-chloranil) AT ¢ Pummerer 287 2 )3, £ 16%
BEAT A4, e i S ML DL A DU S AT 2R &, v] #4321 Knoevenagel 4 757
Yy (IR 1-14)™ . AEFERREBERN 1,3 BSEAb & Y7e LY & AR 28R S8k 71 1 4%
PR, AT REPETS ) sp® BR-BREE ML) Pummerer M4, — /i Pummerer
I T EEAE R A Aok ARt I B T o A
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o o o-chloranil o) (o)
3 1.5 equiv
RlMRZ + pp g ——— R R?
80°C, 0.5h _R®
Ph S
R1,R,=Ph,Me,OEt 70%-87%
R3;=Me,Ph,Bn
o o o-chloranil O O
3 .
RlMRz R . LB R
100°C, 8h
Ph

Rl,Rzzph,Me,OEt,4'C|C6H4 63%:-970¢
0- 0

Rz=Me,Ph,Bn
K% 2-14
Sheme 2-14

BLAEAL T DL AZ IO S S )R BEA T (K04 P A B B (Tsuji-Trost S AY.) 52 R 3R
Bk — BB Y S — BB, RN ] LUAE R 28 (AL B e T H A s PR A 2
FEVE S SLARIERENE DR XGRS, (EE R N AL A o0 b R
RIRIEH ol FAb By L Bk, G SRR A SERRS T4 A7 P - U B 1 1
DN, MR BLys D IRl 26 (2B 3R, vy Tsuji-Trost SOV FIR% . BLAR Trost
N CAAEIX U T SR H T B R AR AR S 5 e U N . 2
SR KR SRR, A OAEHEAL B K CuBr AT CoCLAFH T, 3£
JEIIEAALTY sp’ RSV nT LA BIIRTEAL, 65 13- Pl R sp” ik
SR E T B ARG (B 2-15)1T

2.5mal% CuBr o o
10mol% CaCl,

o 0
@ S TBHP _ Me Me
Me Me -

80°C, aver night

K% 2-15
Scheme 2-15

FEAHIRIIAR R T, “FALIK sp® BBt ] DAV AT 5 1,3- Bt (22
TG, B TS N BRI FeCLAE WAL, AT DI RREF R % (B3R
2-16) [47]0
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H O O
o O 10mol% FeCl, 3 9
1 R R
@R + RSJ\/U\RZ g

'BUOO'Bu R

80°C, 8h

K% 2-16

Scheme 2-16

FEPTA IR - 0 TN S AT RE I 10 Tl e e R B VB Y CDC
I G BE At HAR AR R — e FERT N TARRIEAN b, w2 NDRE B3R s B 4
RE—GH4E, B LMREF A3 3 T 30 e 5 IR MR AR e =4 (1 2-17) ™

9] @)
<:> OEt 10mmol% FeCl, OEt
+ >
OEt 1mmol TBHP OEt
o) 100°C, 12h, N2 0
K 2-17
Scheme 2-17

2.1.3 MR AEELTEY C-H EH LT

Clark YA T THE XA AN 1 IR K A B 205 Y
SV, BRI AR A, RS R (3 2-18)

@) I 0O
. NTs"-'-S+H p-tol X _R
(%7 = G

R n
T\SN i Et:B, THF (0]
Stptol _ =TT X\ _Ph
— 48%
Ph
TsN™ EtsB,THF (@)
\ + \
Ph S—p-tol m
\—/ 45% Ph
K% 2-18
Scheme 2-18

Fuchs YOS A2 AL T Pk = G IR M % THF (R BRIEAL SN )i, 3E— 2D
JUT THF MRS, S N = IR B ORFF (KRR, AERE ey . Apekethn]
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HRIBAF LR (B 2-19) ™7,

R
X — X =
H(UH R— SOzCF3= n( ) =
AIBN or hv
X=O,S,CH2 59%-92% X-O,S,CHz
n=1-3 n=1-3
A
. . -SO
HCF, CF3 —2 — 'SOQCF&\
Y R
X — X /
. R———=—SO0,CF;
() > () SO,CF5
X
A
X=0,S,CH,
Ph =1- Ph. _~
A s0,cr, —12 \»/”\lei>
AIBN or hv
K 2-19
Scheme 2-19

2000 4, Davies PE4I4RIE T W F1E Rh/EEAA DA THF 55k
SRR AL ARIBE SN o ML R BE RS YD e 8 R = b () 4k, AR5 il
o C-H ik R rp i N2 C-H #, SRS AFENEKR, 257 —
WX NAEIR (% 2-200 ™

o)
CO,Me = O—fRh
CO,Me \ / o O“( l
N2 g “y A N"  “OfRh

Ar Rh,(S-DOSP), |

reflux 50-82% yield 4

52-76% ee Ar=p-(Cq1.13H23.27)CeHa
Rh,(S-DOSP),

K% 2-20
Scheme 2-20

2002 4, Ishii /NHHRIE T F 42 )8 Co AL T, THF S H 182 00 a3
SN R0, I AR LR AT (B3R 2-21) ™
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10mol% NHPI
O CO.Et 0.1mol% Co(OAc), O O
(] + EOo,c "2+ O > CO,Et
rt, 18h X
X:-OH 62%
X:=0 30%
10mol% NHPI X
0.1mol% Co(OAC), EtO.C
_O. CO,Et )2
n-Bu” > n-Bu * Et0,C7 N2 + O2 = 2 CO,Et
1 atm PhCN
50°C, 13h n-BuO n-Pr
Conv. 67% X:-OH 54%
X:=0 2%
K% 2-21
Scheme 2-21

Yoshimitsu /NHARIE T — MR RNV, 7EUT L& (TBHP) /=24
SRR, THF () o AL S AT S e S Y, FE T ik 5 65-82% (]
*® 222 7,

10 equiv. Et3B

6 equiv. t-BuOOH
RCHO a - [;;L\(R . [T}L\/R

106 equiv. THF ]
0°Ctor.t. OH OH

threo eythro

R=C12H25, 4-MeOC6H4, 2-BTC6H4,

Ph, 3,4-methylenedioxyphenyl

K 2-22
Scheme 2-22

2009 4 Tito Akindele fi)Ri& T 7E5| & 71 MeZn, Et;B 25 K, THF [¥) o A7 fx—
SR VEAL 5 I BEVE B N B B G al L, H PR IA F) 81%~83%, 1 H. R M
WSEVEIR I (KR 2-23) P

intitataor, air
rt Ph™ ~XH
X=NPMP, O X=NPMP
initiator=2nMe,, Et3B
Kl 2-23
Scheme 2-23

WHREI N, FECHGAT T RPN AUZHER A H 57, ARk
ek, BATTn] LUEGE Sl DUNBR AL 540 (THE) IR o-H, A2 A S 1
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FOWPE, AR ELOETRTRBLIBIC A p FIERE (R 224)

L e

Ar Ar IsC

/\ o@‘%@
|
O,

ﬁ/

DA

K% 2-24

Scheme 2-24
MR EYIRE AT, AR T BN T AL R
AR B, ARA S IR0 R KOO B R G N IR (BP) B R
RIPDCHGH], T Aalis 3] 70% L E (B3R 2-25). RO W 345 DRI R
TR T (AIBND, 5B e (R0 FE AR S ™

*11% H Diethyl maleate F1 =48 2434 CL5¢ (Trioxane) [ W, = %k 3] 84% (&

%% 2—26) [60,61]0
o)
L BP, hv
+ (0] (@) >
-/ MeCN X o)
X o}

X = H (78%)
X = OH (75%)

Kk 2-25
Scheme 2-25
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COOEt
(o\] [COOB BP. hv 0
+ >
0. 0 COOEt O._0O COOEt
K3k 2-26
Scheme 2-26

2.2 BFMTHBEAT PEFER N IERIR

2.2.1 ERFHTHBE AR PR E R

FRAT TR B X B[R] 24 AE S R R T, AE GRS T DY ARG S 1~ 11 a-
ik C-H BvEAL, SERA C-C sRIe, Hx N EA &SRk Ert, %
1A% 43-63% (HFE 2-27).

0
C? hv (A = 254 nm) HO
AN X + >
Rl | g 0 t T T Lk
= = — _—

R=4-methoxy, 3-methoxy, 2-methoxy, 4-phenoxy,
4-hydroxy, 4-methyl, 3-methyl, 4-ethyl, 4-fluoro

Kk 2-27
Scheme 2-27

P AEE 7 R LUK S N4 R S LAR R b, Bl FH DY S8y (THT)
VER ). AEVCHEAT T S I 1 oA C-H s, S C-C BRI
o S S5 R AL T BA IO H bm 0, RIZE R T nse ) 2f, Al ie

R WAE 3F AL (IR 2-28) . % N RIVATIHEH] 4,4-— HI AL K
(1) VRN NIRRT, Xt s M EATHAL T EE RE M 15 21 5 e PR IE B
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o s
HO
g, Y T
.
MeO ome  ° MeO O O OMe
1t 2f

MeQ OMe
HO OH
lgli% 2-28 MeO OMe

Scheme 2-28 3f

2. 2. 2 NEIRYSE BRI 4K K S R PP JE 3o 1% S ot A 35 i

T4 0.02mmol 4,4- " HIEEE IR (1F) 1ENFRHERRY), fEJC/K THT
HON . SREGEE R, MIEFH KA 185 nm 5% 254 nm (entries 1-2, % 2.1)
(RPN, SRR 4h A 2k, FLROM KR TR o 243 FI 9% Kl 280 nm
(entries 3, % 2.1) SAMGRGS, AAERRA T H AR =9 2f, [ IE A4 el -
Yy 3f. 243% ] 313 nm Centries 4-5, % 2.1) HAMNEITI, Forb 2 5w ik B
5] Centries 5, % 2.1) HAR/™ ) 2f (1) Fdgmik 2] 49%, /=) 3f 7730 46%.
3% £ 320 nm, 350 nm, 365 nm Centries 6-8, & 2.1) KAMEIETF, HH x>
IR 7 253 B B 48%, 41%, 45%. ZRe LU R AERENE, FAT BP0 Ik
KA 313 nm, 4,4- " H4IE T KHFE (1) (0.02 mmol), £ 75/K THT (10 mL)
VE R P SR
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R 2.1 WA S IR EENT S L Y 5.

Table 2.1 Optimization of the Wavelength and Concentration.”

Entry Wavelength(nm) Time (h) Yield of 2f (%) Yield of 3f (%)

1 185 42 complicated

2 254 60 complicated

3 280 4 46 52
4° 313 34 43 51
5 313 4 49 46
6 320 4 48 52
7 350 4 41 48
8 365 13 45 46

[al NV 4l R SRY, SImAAE T, 4,4- AL ZEHE (1) (0.02 mmol), 7F /K
THT (10 mL) &FIH N [b]RMN A @AY, EAMT, 4,4- " HEIE KHER

(1f) (1 mmol), ZEJ/K THT (5 mL) ¥51H SV .
2. 2. 3 NEIAY /e Pz im E X3 2 Nz B9 52 i)

P N RBAT 82T N BE R S IR o 85, BRATTH S g il P o
f31-20 °C Centrie 1, % 2.2), KILRMIPER KPR, JRAZE T 4h A fe
SRR, T2 18 h ARELAH, T H R AR E b A T A T R BTk
HA VB FE R B2 0 °C W Centrie 2, % 2.2), KNVBEFEEFEN T, KON HE
EAEPGIN, FERWA IS MRV IR R 2 ot (entrie 3, £ 2.2), HH
PRFEPII = et S B 49% . AT il 4 40 °C (entrie 4, 3 2.2) B, MV
(RIRE RN B, AR R L SR A N IR A BT N B o B SN RE 1 4k 242
% 80°C, [RIESE Centries 5-6, % 2.2), AIKBLBEE S SR (R, N
Mg TR . Ga%iE, FAVRSEIESE rt o SN 1 e B .
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R 2.2 R BERT B s

Table 2.2 Optimization of the Temperature.*

Entry Temperature Time (h) Yield of 2f (%) Yield of 3f (%)
1 -20°C 18 41 44
2 0°C 9 42 41
3 rt 4 49 46
4 40°C 3.5 44 42
5 80°C 6 complicated
6 Reflux 5 complicated

[a]l BV 454 GRS, JE PR 313 nm AN, 4,4- — HAUE K H (1) (0.02
mmol), 7EJC/K THT (10 mL) &5 [V

2.2. 4 IN[E)8Y Lewis E& Tz [z B4 2 M)

W5E T A R N Kk 313nm, 4,4- AR MR (16 (0.02 mmol),
FEG/K THT (10 mL) &7 & T OV . A T REMS HE— 204 sz I B 77 6
RN, SRl TR N AN Lewis MRAEAMELT (R 2.3), HIHHRRW L
AT S ROE PR IR, DABE s H AR S 2F 1074, TETfIL T K Lewis
MRAEALFS R b R IR 2 Lewis MRAEAGTIAE THT b, WEMERZE . BATRILN
AfELEF] AlBrs.  Pr(OTf); + Fe(OTf); « Cu(OAc), (entries 2-5, 3 2.3), XM
(K45 FARE % M IMAMEAL T Mo(CO)s « Nd(OTf); (entries 6-7, % 2.3), KM
I IR A, AH 2 S AR FE ARG . INAEAL 7] W(CO)s ~ Dy(OTH)3+ FeCls\ Zn(OTf),.
Fe(OTf),. BeF;:Et,O. TsOH. In(OTf); Centries 8-16, % 2.3), AR Hbrr”
Wy, T AR PR R AR AR A HR M I TR K o (B AR R A I
AICLAE MR Centries 17, £ 2.3), L HFR™Y) 2f (1720 LU = 21 57%.
R YA 3F (17~ AT 35%, 1T HR M)A 4 he (HOZIRIBHE, £EXEK
SRR, RIUR S S AR T

26



B 5 OB TR VI

2.3 AR B Y. 5.1

Table 2.3 Optimization of the Lewis acid.”

Entry Catalyst Time (h) Yield of 2f (%) Yield of 3f (%)
1 - 4 49 6
2 AlBr3 60 complicated -
3 Pr(OTY); 40 complicated --
4 Fe(OTf); 22 complicated --
5 Cu(OAc), 22 complicated --
6 Mo(CO)s 68 trace --
7 Nd(OTf); 40 trace --
8 W(CO)s 68 17 42
9 Dy(OTf)3 16 32 42
10 FeCl; 42 33 31
11 Zn(OTH), 22 35 33
12 La(OTf); 22 35 0
13 Fe(OTY), 60 39 51
14 BeF; - Et,0 26 45 42
15 TsOH 19 46 42
16 In(OTf); 40 49 29
17 AlCl; 4 57 35

[a] N AE: /SR Y, BN 313 nm BAMGIRES, 4,4- 4L 2KHE] (1) (0.02
mmol), 7EJC/K THT (10 mL) #5193 s v, AL FE A 10 mol%.

2.2.5 AREFMHTHBZR T P ZFENIBN TR

RIS SOV I BEAC B, FAHESH T — A Arse gyl (% 2-29). 1k
B 44 HESE ORHE (16 RS N AERBOR SR R 1, AR5
BRI 4F, BRI 4F 5 THT Al A C-C BEARIBAE R H bR/~ 2f. [R)I
PRANERITEIE 4F s C-C BB IER A el P ) WA I 3.
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hv /‘)‘\‘\ S
—_— —_—
Isc ‘D MD
MeO OMe MeO OMe
1f
1*
S

OH
HO
o, L — T
S
MeO OMe MeO OMe
Af of

HO

MeO OMe

K% 2-29 3f
Scheme 2-29

OH MeO OMe
MeO II II OMe OH

2.3 XBFMTERERT PEFENREIEMR

2.3. 1 XBMFM TR A A R EFE R

RAMBFERBDEI AP F D ZMIAUR P10 o8 CH BEFRAL, 5T
(KR 4,4~ LRI C-C BRI, (EATEE 4 R AR QUERIR ) g,
T FLAE K0 2g (P 2-30) 3014 SIS RS 26 FHEA R AR K
P 29 10775

o) Q o}
“ T y '
DAPUERSE.
n
Me Me o O O O O
Me Me Me Me
19 29

K% 2-30
Scheme 2-30
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2. 3. 2 AN[E] BY 3 BRI X Sz Nz B9 22 i)

TRATTEA 4,4- — K 2R FRRAE by 6 S N RS R4, 67K THF 1R [ N4
Mo LI R, EEM K 365 nm 8% 313 nm (entries 1-2, 3 2.4)
(RIS A USRI, SN AR TR T LS B AR B =4 . i i KRy 254
nm 2 185 nm Centries 3-4, & 2.4) RAMGHUEGS, AERSBATHIME ™) 1g,
i AR =4 2g. SR RIS = SRR R, IEFOEIRIK N 254 nm, 4,4-
T TIEHER (0.02 mmol), #EJ5/K THTC10 mL)¥ 7 5 N A S A AL 461

R 2.4 PR B 5.
Table 2.4 Optimization of the Wavelength.”

Entry Wavelength(nm) Time (h) Yield of 19 (%) Yield of 29 (%)

1 365 14 35

2 313 11 31 --
4 254 5 45 32
6 185 6 34 36

[al R N4 U/ ARYT, WA T 4,4-— F L 2K 1 §i(0.02 mmol), 7EJG7K THF (10 mL)
A Y

2. 3. 3 NG A4 S g i FEE % Pz oz Y 52 i

P ORI N HE T RN R N RS o B 58, RN I A 2
-20 °C Centrie 1, % 2.5), KN HHEFA P, JRASEE T 5h A B4 R &
N, FFE8h ARERMAEA, T H RN A IR AR R I K P R R R
SRR E S i 4 ot Centrie 3, K 2.5), H HAR I 5 H IS ] 49%. 4Rk
THER 2 55 °C (entrie 3, % 2.5) B, MR FRE, (&= R EE A&
IR A TR R R T R R A Centries 4, K 2.5), ATRIBEH
SR FERIA i, ROV R T IR A% LRG58, FRATESE it Ry S ) B

(ERITN-
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K 2.5 WX BN 5.

Table 2.5 Optimization of the Temperature.*

Entry Temperature Time (h) Yield of 19 (%) Yield of 29 (%)
1 20°C 8 34 0
2 rt 5 45 32
3 55°C 3.5 34 30
4 Reflux 1 complicated

[a) I NS5 RS, AN 254 nm FRAMEIE ST, 4,4-— H 3L 28 F i (0.02 mmol), 7E
Jo/K THE (10 mL) %7 [ M o

2.3. 4 IN[EIBY Lewis B8 Xt & N 220

ffE T BRI R N S5 K 254nm, 4,4- 7 HE 2R T (0.02 mmol),
FEG/K THT (10 mL) &7 & T OV . A T REMS HE— 04 sz I B 77 S
SR () e RO P, BAT) 22 1 AR S B AR N Lewis BRAEAHEALA] (R 2.6),
SHEE R RTE H R RO R AR SR i A= 7

2% H AT Eu(OTD); « Sc(OTf); + FeClss Sn(OTf),. Sm(OTf),. Fe(OTf);
AgOTf . Eu(OTf); . Cu(OTf),. Hf(OTf), C(entry 1-9, 3 2.6), ¥
IR AR, e N HEOTD4 AE R AL IR Centry 9, 3 2.6), RIVI1i%
PRy, HrR B 29 775 57%, (HRIRBHRIRE, HARAT 7 FRIE 10%
IS PG REAC A K =1 2MIE AR Centry 10-28, 3 2.6), X Mk$E
PEI R A SO A S 19, Hr AL ] Fe(OTH), /= % 55 ik 2] 69% (entry
28, #%2.6);

2.6 MRS VI 5 .

Table 2.6 Optimization of the Lewis acid.”

Entry Catalyst Time (h) Yield of 1g (%) Yield of 29 (%)
1 Eu(OTf); 25 47 17
2 Sc(0Tf)3 10 36 17
3 FeCl5’ 12 43 21
4 Sn(OTf), 11 29 24

5 Sm(OTH), 18 44 30
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Entry Catalyst Time (h) Yield of 1g (%) Yield of 29 (%)
6 Fe(OTf); 9 17 40
7 AgOTf 16 10 54
8 Cu(OT9), 15 8 49
9 Hf(OTf), 5 10 57
10 Hg(OTf), 7 21 _
11 AlBr; 14 31 -
12 Ni(acac); 17 39 --
13 BeF; - Et,0". 20 42 -
14 Zn(OT1), 17 45 -
15 In(OTH);3 11 45 -
16 Dy(OTf); 9 46 _
17 Pr(OTf); 11 48 -
18 Yb(OTH)s 11 48 -
19 Ho(OTf); 10 50 -
20 AICl; 10 53 -
21 Th(OTf); 8 53 -
22 BeF; - THF® 2 54 -
23 Er(OTf); 13 57 -
24 Fe(OTf), 11 58 -
25 Ni(CO),(PPH3), 11 58 -
26 Nd(OTf); 8 59 -
27 Y(OTf);3 8 60 -
28 Fe(OTY), 11 69 -

[al ) N4t EARY, WA T, 4,4- = FIE 2K HE(0.02 mmol), 7EJ67K THT (10 mL)
FHRIH N [bHEAE I & 20 mmol%
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2.3.5 HBBEMT Lewis BRIEIL TEEZEIAT P2 E S M A B 4D A

3t

WA A2 SN I HEA TR, AL T AT REMHLE (B 2-3D). 1
EW L AEEHIE T N AE SR A TR A 1%, BEAG 54 2E R R 136 7% (single
electron transfer, SET) 42 W1 [Al4£ 3g, FFTE—N & 5% o B 5 & A2 5+ % % (proton
transfer, PT) A2 — MUK A IS FIUR S 1k, AR5 R4 C-C BEARER A )
IS4 19, 54 19 ik, A3 EIBK=4) 29,

I i O
Me Me ISC O O SET
1 Me
1*

3
Me

()

(¢}

o®
0o OH
SO R S
Me Me Me Me
39

(e}
(0]
HO |
T, DA®
Me Me
1g Me 2g Me

& 2-31
Scheme 2-31
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3.1 SLIGRM1E

3.1.1  S2EgiEm

"H NMR %] Varian Merucry -400 (400 MHZ)#% i 2L 4R 400152, >C NMR % H
Varian Mercury-400 (162 MHz)#Z W 3E4RACNE, IR CDCL ARSI IR Jti
] Nicolet avatar 360 FT-IR R ZL40 73 606 R vHlll g s PREAE AT M &40 1)
AR RR-H (200-300); U BEVEAR SR IE . WGAIAE AT

1. POSMEM(THT)

RS AAAE N IR 25

2. MEKNE

PHZZAFAE AR, DA IR FR S0, Arva i A i m 28 A

HE A2 R Ui, B KK A .

3.1.2 KIWERIRME. FREME

3.1.2.1 £ &%) 1-(chloromethyl)-4-fluorobenzene (1a)& X

1a

7E 100 mL — EEEH AR BCREE 1.5 g(0.2 mol), CHCl; 35 mL, HLBE
2.05ml, HEPEERE . TEVOKIT T, S0 1.2 mL S0 CHCL ¥ 15 mL,
1 h Inse, RNARREAE 0 C/RM 1 h, RIGKE 2 =il R WV, TLC (PE:EA=1:6)
PREER RN S R AR, FRHACRRE M 2 0T HA kg
fift, RLIEERZMEBEEL, AT A, AR EON A EEH TN S U
3.1.2.2 1t &%) diethyl 4-fluorobenzylphosphonate (2a)& X

O OFEt

W

R
Ot

F 2a
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£ 100 mL = FVGEH R I S x4 DLEREIRR = SR 7], i 4
%160 ClHlR 3.5 ho JUEZZME (118~126 C), MEN BN IR =2LEE, M
RIS A MR Y), RN B (58 EA:PE=1:10;4X%)5 EA:PE=1:1) /53] 44
NIRRT,

3.1.23 &4 (E)-1-(4-fluorostyryl)-3,5-dimethoxybenzene (3a)& Ak
I
MeO ‘ A O
OMe
3a

# 500 mg (4-F 3L B W8 100 mL &), LL THF M350, UK
A IIE 0 CLLR, M NaH, ¥WAHHE 1 h, 285N 0.5M (KX}
HH AR 52 RS (1) DU SR IR VSV 15 mL, AR5 T 22 3 OV o TLC BRER A | WV &5
WG, 18N 20 ml K, 28 NaH. H EA #HU (25 mLX3), AHAHA
WA NaCl K¥swve sk £ dE, JE/K Na,SOs T4, ZTFHA. B2

(EA:PE=1:20) 34k, mp39~41 C, /=% 52%.

'H NMR (CDCl; 400 MHz) & 7.46 (m, 2H), 7.06 (m, 3H), 6.96 (s, 1H), 6.68 (s,

2H), 6.41 (s, 1H), 3.84 (s, 6H).

3.1.2.4 L& (E)-5-(4-fluorostyryl)benzene-1,3-diol (4a)& B
F
ey g
OH
4a

RNARRTCK TR, NoAR37, K 200 mg tb&4) 3a & T 100 mL PYFH -+,
I 40 mL Jo7K CHoCL |, FEFEAT IR, OKERIERHIA2-10 °C, Ak T~ 22180
B 5.8 mL (0.06 mol) BBr3 () CHyClL % 30 mL, SVAR R REFLL A, 5%
IIERE 2 1 h g, SRJEIRFFAE 0 CLANHH: 2 h, Z248% v 28K 15 mL, #
SN EI N 80 mL UKAK HhiiHE, A EEAUTEE R, H EA (30 mLX3), H
FUAH LA NaCl K (30 mL X 3) Pearh ik, FIJG/K MgSO, 148, by, 2%
T FIPOEFEZHT (EA:PE=1:20) 18 A[EK, mp 57~60 C, =% 44%.
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'H NMR (CDCls, 300 MHz) & 7.40 (m, 2H), 7.06-6.92 (m, 6H), 6.78 (m, 1H),
4.98 (s, 1H); IR(KBr)v: 2999, 2940, 2837, 1588, 1501, 1449, 1346, 1211, 1151, 1064,
960, 833, 679 cm-1; MS (EL 70 eV) m/z 232 (M", 1.12).

3.1.2.5 1t &%) 1-chloro-4-(chloromethyl)benzene (1b)& X

1b
7E 100 mL = eI I AT & EE 1.5 ¢(0.2 mol), CHCI;35 mL, HERE 2.05
ml, FEFEEIE. EVKOKIB T, S8 0 1.2 mL =& WA CHCL ¥ 15 mL, 1
h Inoe, RINARRRFEE 0 'CRM 1 h, KRG E 2% E RN, TLC (PE:EA=1:6)
PREZER RNVEE A R R IT R, FHACERUE 22w T A ik
fift, IEIEERIMEIE S, A TAumE. MBI RAEERT N 28R,
3.1.2.6 1L &) diethyl 4-chlorobenzylphosphonate (2b)& X

C"@—\ O
P—OEt

/

EtO
2b

£ 100 mL = FVGEi P A & xifbw  DLERERR = SR 7], i 4
%160 ClHlR 3.5 ho JUEZZME (118~126 C), MEN BN TR =CHE, M
HR 4 A iRy, FEEMT 2 (S EAPE=1:10; 4R J5 EA:PE=1:1) 135 4-&
NIRRT,

3.1.2.7 &%) (E)-1-(4-chlorostyryl)-3,5-dimethoxybenzene (3b)& X

C
MeO O S O

OMe
3b

# 500 mg (4-FFHE) BEER BRI 100 mL i, DL THF A%, UK
WA IAE 0 CULN, Wi NaH, #3458 1 h, FZZEH N 0.5M (X}
PP AL R RS 1) DU S0 IR ¥ 9 15 mL, AR5 DK 48 3 I N o TLC JBREER 5 R W 45
e, 2NN 20 ml K, BREidE NaH. Al EA AL (25 mLX3), fHLAH
VAN NaCl K veis b b, FTE/K NapSOy T4, i, 2 T, Pl 2
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BT (EA:PE=1:20) 3 A4, mp39~41 C, ;=% 59%.

'H NMR (CDCls, 400 MHz) & 7.44 (d, J=6Hz, 2H), 7.33-7.32 (d, J=6Hz, 2H),
7.04 (s, 2H), 6.68 (s, 2H), 6.43 (s, 1H), 3.86 (s, 6H); IR(KBr)v: 3035, 2993, 2931,
2831, 1591, 1456, 1345, 1202, 1150, 1059, 952, 829 cm-1; MS (EL, 70 eV) m/z 275
(M", 0.72).

3.1.2.8 {541 (E)-5-(4-chlorostyryl)benzene-1,3-diol (4b)& X
Cl
ey g

OH
4b

RINARRTKTCR, Ny {97 K5 200 mg L&) 3a BT 100 mL PUZIH
A 40 mL oK CHCLy , AR, UKER R 312210 °C, FEdiHE T 2212
& 5.8 mL (0.06 mol) BBr3 [ 757K CHLClL ¥ 30 mL,  Je W AK R L ELT
ZASWIINZE 1 h Inse, REREE 0 CLLUFHERE 2 h, ZZASW Ny 178 1%7/K 15 mL,
PR NHEEIA 80 mL KK FE, A ATiEA . H EA 2H(30 mLX3), f1
HUAH LA AT NaCl K30 mL X 3)pE 2k, FHIJE/K MgSOs T4, 78 T,
POd AR (EAPE=1:20) #34 (OREBIBARAR, 7% 46%.

'H NMR (CDCl;, 300 MHz) & 7.87 (m, 2H), 7.49(m, 2H), 6.95 (m, 2H), 6.38(m,
2H), 6.19(m, 1H), 5.34 (s, 2H); IR(KBr)v: 3235, 2934, 2852, 1695, 1606, 1453, 1243,
1143, 1026, 756 cm-1; MS (EI, 70 eV) m/z 246 (M, 1.12).

3.1.2.9 1t &%) 1-bromo-4-(chloromethyl)benzene (1¢c)& X,

O
Cl

1c

7E 100 mL = EBER - AT IRAEEE 1.5 g(0.2 mol), CHCI335 mL, HERE 2.05
ml, HEFEMR. VKB T, 28RN 1.2 mL 50V CHCL % 15 mL, 1h
e, RNARZRRFEE 0 CRM 1h, REKERERKRMN, TLC (PE:EA=1:6)
PREZER RNVEE A R R TH, FHACERUEZ R R w1 Ak
fift, ILIEERZMEIES:, A TAuEE. MBI RREAEERT N2 a8 R,
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3.1.2.10 £ &%) diethyl 4-bromobenzylphosphonate (2¢c)& Ak

Br‘_@—\ //O
P—-OEt

/

EtO
2c

100 mL = VG R A S S . DUOEBER — ZWR 7, i i
%160 ClHlR 3.5 ho JUEZZME (118~126 C), MBEN BN TR =EE, M
HRIA I R, FEENT B (S EA:PPE=1:10;4% 5 EA:PE=1:1) £33 4-J3°%
HEIER — L,

3.1.2.11 L &%) (E)-1-(4-bromostyryl)-3,5-dimethoxybenzene (3¢)& X

Br
MeO O NN O

3c

#4500 mg 4-IRFILRERE — BRI 100 mL Kb, DL THF s, vkh
WAEARE 0 CLAR, MmN NaH, A5+ 1h, FFSEH N 0.5M (X)X} i
AR IR PR ) DY SRRV 15 mL, ARSI 2 =i S0 o TLC BRIER 58 S W45 3R
Jo, ZE12iN 20 ml /K, BRZeid & NaH. A EA ZHU (25 mLX3), HHUAHAHM
Al NaCl /KEses 2 rE, H LK Na,SOs T, ZZHWAl. PRI A: 28T

(EA:PE=1:20) 34k, mp90~93 C, /=% 51%.

'H NMR (CDCl3, 400 MHz) & 7.48 (d, J=8Hz, 2H), 7.36 (d, J=8Hz, 2H), 7.01
(s, 2H), 6.65 (s, 2H), 6.41 (s, 1H), 3.84 (s, 6H); IR(KBr)v: 3740, 3530, 3353, 2925,
1595, 1477, 1344, 1282, 1146, 1066, 999, 963, 824, 751, 668, 621 cm-1; MS (EI, 70
eV) m/z 319 (M, 0.72).

3.1.2.12 &%) (E)-5-(4-bromostyryl)benzene-1,3-diol (4c)& Ak
Br
HO ! N O

OH
4c
RINARZRTKTCE, Ny f#4r. ¥ 200 mg L&) 3¢ & T 100 mL DU,

A 40 mL Jo/K CHyCLy , HEFHHAMR, OKERHTE H122-10 °C, AEHLHE R 221R T
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Jn& 5.8 mL (0.06 mol) BBr; [JE7K CHLClL ¥ 30 mL, RIVAKR REFL0 R, $
FIR IR E S 1 h Inog, SRGRFEAE 0 CLL N HERE 2 h, Ny 2818/K 15 mL, #
RV 80 mL UK/K ke, A A BIEAER, M EA 2R (B0 mLX3), AHL
FHEAHIAT NaCl /K (30 mL X 3) e, Jo/K MgSO4 T8, 28 T lAE s
JZHT (EA:PE=1:20) #3044, mp 148~152 C, 773 40%.

'H NMR (CDCl;, 300 MHz) & 7.74 (m, 2H), 7.63(m, 2H), 6.94 (m, 2H), 6.38(m,
2H), 6.11(m, 1H), 5.37 (s, 2H); IR(KBr)v: 3740, 3530, 3353, 2925, 1595, 1477, 1344,
1282, 1146, 1066, 999, 824, 751, 668, 621 cm-1; MS (EL, 70 eV) m/z 246 (M", 1.12),

3.1.2.13 £ &%) 1-(chloromethyl)-4-iodobenzene (1d)& BX

1d
7E 100mL = VRSP In NSRS EE 1.5 g(0.2 mol), CHCl;35 mL, AERE 2.05
ml, HFEEAE. ZEOKKIB R, 2123 1.2mL —SEAX T CHCL %3 15 mL, 1h
e, RNARRREFEO0 CRA 1h, RIFWE RSN, TLC (PE:EA=1:6)
PRER S OV S s 2 R T, KRR 28R 258 2T A hises
f, ILuERR LML, AT AR RGOSR EREN TN D E U
3.1.2.14 1L &%) diethyl 4-iodobenzylphosphonate (2d)& X,

I—Q—\ 0
P—-OEt

/

EtO
2d

100 mL = Vel oM AT < 46 . DOIBEIR — S B8 A7), s
A 160 CIENAL 3.5 ho WUEZEME (118~126 C), Al mKUHiR = L8, M
W A (04 (R Y, FEEMT 0 (U EAPE=1:10; 4k )5 EA:PE=1:1) #3-5] 4-fi
NEEREIR — LR,
3.1.2.15 L&Y (E)-1-(4-iodostyryl)-3,5-dimethoxybenzene (3d)& B

[
MeOE \

OMe
3d
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¥ 500 mg 4-BUSILRERS — BN 100 mL Kb, DL THF s, vkh
WAEARE 0 CULF, Wi NaH, HAHEE 1 h, FHL8HIN 0.5M )%} i
SRR W I DY SRR IR ¥ 15 mL, AR5 M 2 S R B TLC BRER 28 Y 45
Jo, ZE12N 20 ml /K, BRZeid & NaH. A EA ZHU (25 mLX3), HHUAHAHM
A NaCl KW 2, K NaSO, T, K T itk 247

(EA:PE=1:20) HAMEA, mp 111~114 C, ;7K 41%.

'H NMR (CDCls, 400 MHz)  7.53 (d, J=7Hz, 2H), 7.31 (d, J=6Hz, 2H), 6.91
(s, 2H), 6.85 (s, 2H), 6.32 (s, 1H), 3.87 (s, 6H); IR(KBr)v: 3740, 2998, 2935, 2367,
1600, 1453, 1346, 1286, 1203, 1151, 1056, 960, 833, 702 cm-1; MS (EI, 70 eV) m/z
319 (M", 0.72)
3.1.2.16 L&Y (E)-5-(4-iodostyryl)benzene-1,3-diol (4d) & BX

|
HO O X O
OH
4d

RINARRTKTEE, Ny 4. ¥ 180 mg L&) 3d &1 100 mL PUSF
N 40 mL Jo7K CHoCL |, BT AR, UKERA E122-10 °C, fEdiih: T 2218
Jn& 5.8 mL (0.06 mol) BBr; [JE7K CH,ClL ¥ 30 mL, RIVAKR LR, #
BRI S L h Inog |, SRIGARFELE 0 CLURHERE 2 h, N4 #2818 7K 15 mL,
WOV IREIN 80 mL KK HE, A A EIEA L, H EA (30 mLX3),
HUAH LA AN NaCl /K% (30 mLX3)WEa Pk, Tk MgSO, T4, Z8 itk
A ET (EATPE=1:20) 1940 [4K, mp 104~106 C, /"% 37%.

'H NMR (CDCl;, 300 MHz) & 7.78 (m, 2H), 7.29(m, 2H), 6.95 (m, 2H), 6.42(m,

2H), 6.17(m, 1H), 5.37 (s, 2H); IR(KBr)v: 3852, 3743, 3265, 2921, 2851, 1703, 1589,
1462, 1339, 1249, 1147, 1037, 825 cm-1; MS (EL 70 eV) m/z 338 (M", 1.12)

3.1.2.17 £ &%) diethyl benzylphosphonate (2¢)& ik

oy
P—-OEt

/

EtO
2e
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100 mL =B AR UG = LB B, i nha
160 CIJ 3.5 ho WIEZEMW (118~126 C), R EMHR =L, b
FIAAH ENIRY), HENT 8 (U8 EA:PE=1:10; 4% 5 EA:PE=1:1) 53] 4-fll™¢
HEIER — L,

3.1.2.18 L&Y (E)-1,3-dimethoxy-5-styrylbenzene (3e)& BX
MeO O NS O

OMe
3e

¥ 500 mg A& 2e I 100 mL Bejfiirt, LU THF 935, IKERHAEYA AN
FOCLLN, i NaH, ¥WAHFE 1 h, FZISH N 0.5M %] FH A K F i
[ PSR 9 15 mL, ARG R =il RN, TLC IREER RN LR E, 2120
B 20ml 7K, B2 E NaH. H EA ZHL (25 mLX3), HHUAHHTA NaCl /K
WU, ToK NaSOs T4, 2853 2T (EAPPE=1:20) 14 i
&, mp4l1~43 C, F"F 47%.

'H NMR (300 MHz, CDCl3) § 7.51-7.48 (m, 2H), 7.39-7.34 (m, 2H), 7.30-7.26
(m, 1H), 7.08 (d, J = 16.2 Hz, 1H), 7.02 (d, ] = 16.4 Hz, 1H), 6.62 (d, J= 2.4Hz, 2H),
6.28-6.26 (t, J=2.2Hz, 1H), 3.84 (s, 6H); IR(KBr)v: 3855, 3743, 3011, 2941, 2831,
1589, 1458, 1348, 1294, 1213, 1151, 1053, 963, 816, 677 cm-1;

3.1.2.19 £ &%) (E)-5-styrylbenzene-1,3-diol (4e)& BX
HO O N O

OH
4e

S NAR R TR TS, No &7, #5200 mg tL454) 3e BT 100 mL DU,
I 40 mL Jo/K CHoCl, , FFHAEIVERE, vKERVGRAAI2-10 C, 78 No &9, 1E
PePE R8N 5.8 mL (0.06 mol) BBr; fIFE/K CHLClL ¥ 30 mL, X WAk &
REELLO . SZABWIIMNA 1 h e, AR IRFRREEAE 0 CLURHEH:E 2 h, S48 N
AIZENEK 15 mL, K NIRRIN 80 mL sK/KHBEFE, A GytiEEm, H EA

40



iL

Spss —— 2 RN
= SEIER A

AHL (30 mLX3), AHALIMF NaCl /KW (30 mLX3) ybE ¢k, HIK
MgSO, T, T WFIPLHEF 2T (EA:PE=1:20) 14 A 44, mp 117~119 C,
PR 42%.

'H NMR (300 MHz, (CD3),CO): 86.32 (t, J = 2.4 Hz, 1H), 6.58 (d, J= 1.6 Hz, 2H),
7.08 (s,2H), 7.24 (t, ] = 7.6 Hz, 1H), 7.38 (t, ] = 8Hz, 2H), 7.59 (d, J= 7.8 Hz, 2H);
IR(KBr)v: 3391, 3223, 1593, 1458, 1339, 1258, 1155, 996, 963, 829, 743, 686 cm-1;
MS-EI (m/z): 212 (M").

3.1.2.20 1L &4 bis(4-methoxyphenyl)(tetrahydrothiophen-2-yl)methanol(2f) B & B

S

HO
MeO l l OMe
2f

NNARRTCKTCR, 7E Any (56 4,4- 4 IE 2K HIfi(1a)(48.4 mg, 0.2
mmol) JIA G N (Lewis BRI, IIATE R 0.02 mmol) , A TJG/K YA
WEWy (10 mL), A 8 48, ARG 313nm K PG RV . TLC &
2 Rk SO e 4, e TR, FRERAEAEE T (PE:EA=10: 1), ™%,

'H NMR (400 MHz, CDCl;) & 7.44-7.42 (d, J=8.8Hz, 2H), 7.33-7.31 (d, J=8.8Hz
2H), 6.81 (m, 4H), 4.60-4.56 (t, J=7.6Hz, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.46(s, 1H),
2.84-2.83(m, 2H), 1.79 (m, 2H), 1.61 (s, 2H); 13C NMR (CDCI3, 100 MHz) & 158.4,
150.02, 140.64, 137.68, 127.19, 126.55, 113.42, 113.26, 114.9, 114.5, 90.2, 69.5,
59.79, 55.15, 33.42, 31.77, 31.73 ppm ; MS (ESI) m/z 353(M © Na+)

3.1.2.21 I &%) 1,1,2,2-tetrakis(4-methoxyphenyl)ethane-1,2-diol (3f)BY & A

3f
SONARZRIGKTGA, 1 A IRIRE 4,4~ HISUE 2R R(1)(48.4 mg, 0.2
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mmol) MAJGRNE  (Lewis FRABUREAL R, I AM#EALF 0.02 mmol) , JIAJG/K Y
ZWERy (10 mL), SIS 8 408k, ARJFI 313nm P K6 N, TLC

Rl 42 JsURL s N 5E 4y, R, ARERAEREAT (PE:EA=10: 1), TFH /=%,
'"H NMR (400 MHz, CDCI3) & 7.18 7.16(d, J=8.4Hz, 8H), 6.70-6.68 (d, ]=9.2Hz,
8H), 3.75 (s, 12H).

3.1.2.22 1t &%) (tetrahydrofuran-2-yl)di-p-tolylmethanol (1g)RJ & BX

0]

HO
Me l l Me
19

RINVAR R TCKTICAR, 18 A {3475 4,4-— FIE 28 FIR (12)(42 mg, 0.02 mmol)
IMASER N, I €0.02 mmol) Lewis BRAEALTH, IIATEK VYL (10 mL),
FEFE 8 2, SR 264nm WA MPDGIEY SOV . TLC Al 23 A e B 56
4, BT, RERAEAEENT (PE:EEA=20: 1), ™%,

'H NMR (CDCls, 400 MHz) ¢ 7.45 (d, J = 8.0 Hz, 2 H), 7.27 (d, J = 8.4 Hz, 2 H),
7.12-7.00 (m, 4 H), 4.82 (t, J= 7.4 Hz, 1 H), 3.95-3.80 (m, 2 H), 2.96 (s, 1 H), 2.27 (s,
3 H), 2.26 (s, 3 H) 1.92-1.72 (m, 3 H), 1.60-1.45 (m, 1 H); *C NMR (CDCl;, 100
MHz) 6 143.8, 141.6, 136.3, 136.0, 128.8, 128.6, 126.5, 125.3, 83.01, 82.95, 78.0,
69.7, 26.7, 26.1, 20.9 ppm; IR (neat) 3549, 1506, 1455 cm'l; MS (EIL, 70 eV) m/z 282
(M", 0.72), 211 (100); HRMS (EI) calcd for C19H,,0, 282.1620, found 282.1624.

3.1.2.23 1L &%) 2-(di-p-tolylmethylene)tetrahydrofuran (2g)B9 & X

(0]
|
Me l I Me
29

RNVAK R TCIKTEAR, 18 Ay {406 4,4-— F3E — X HI (1a)(42 mg, 0.2 mmol)
IIAIE N4, I €0.02 mmol) Lewis FRIEALF, INATC/K YW (10 mL),
RS 8 B, ARJGIRON 254nm PRI s . TLC A 2 J5Uk} & B 5¢

4, FETHR, HRERHAENT (PE:EA=20: 1), & =%K,
'H NMR (400 MHz, CDCls) & 7.28-7.26 (d, J=4.2Hz, 2H), 7.03-7.12 (m, 6H),
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423-421 (t, J=7.2,6.8Hz, 2H), 2.62-2.59 (t, J=8,7.2Hz, 2H), 2.34 (s, 3H), 2.29 (m,
3H), 1.99 (m, 2H).
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FME 4t
4.1 BRFEEIAIE X

FEZAR T LRl 2 BE ) BOTVR 5 > AN S i foe 2 0 3% IR i AQR I Ay
Jookh 28 3 i AC . Arbuzov T HE S N A5 B 6E N 1 7 B 9 T B R R AR 2
Wittig-Horner 45 & Js W S i PP AR Se A3 71— 247 Be o s BIUPG 1 A2 P 87
S AMARD H bRtk A IR,MS F1 'HNMR HEAT T G5/ RAE

4.2 FERFMHTEMLIAT PRI ER N IERIR

FE 6 R S5 DU SR S8 R T IO AR & A C-H BG4k, ST & A4 C-C SR EK,
SN FRIANS A SN 405 T HLIE A FSB K 7400 o

FEVA b S B 552 B RATTBCATR A5 ) LUK e 4 i 21 H A e b, iz F DY
SUEWy (THT) fERI RN 7EJGHAAE N S Ji ¥ o k4 C-H sk, A5
5k C-C BABIBE S N . JB @ 'TH-NMR, PC-NMR 434, 45 BEII 4%
T AN A4, RUAERC T I 4 2F, AR AR L WA I 3F
N T v N I i RO R, BTN SR IR TRE L R AL LA A A A el
FUATIRIE o i ML PR 313 nm 5RAMGIT, 4,4- — A 8 HI (1)
(0.02 mol), 7EJE/K THT (10 mL) ¥7 ai S WV, 4k AICI; #2410 mol%
W, IR (26) ;=AU 2 57%, mF-EEEE (3F) 1= 1A 35%.

MY N I FEAR B, BAEH T — AT REmHLEL (BIE 2-29). 1k
W) 4,4- AR ORHIR (1D ERE S T AERBR SR 1, R4
BORRIEAE AF, FRUiEAE 4F 5 THT A IR RAE C-C BARIBRA B H AR =4 2f. RIS
PIAFRURIE af R/ C-C BEARIEAE BLR =y W i 3f
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O 3 0 * T
o —
MeO OMe ISC O O
y MeO OMe

1*

S

OH
HO
AP — OO
MeO OMe S MeO OMe
4f of

HO
MeO OMe

3f

OH MeO OMe
MeO I I OME OH

Scheme 2-29

4.3 XRFMHT Lewis BRIEN TEEZERT hEIFE R L 1R

e

TECHSRAT R USRI U T 10 o-fr R C-H BEAL, 5 44- " HE TR
R A AE C-C BEABIEE, ANOAERE T s 1g, 10 HARAEBOR T HiAK 1) 2g.
TRA A B TR 0 S5 S 4 A A A A A5 B B i) AR BRI K 290 FRATTRS S5 B ARG
W DL RIR R AT IR e RN I B4t 9K 254 nm 4D
WS, 4,4- 43 R, 55K THT (10 mL) & =i RN, S 10
mol% HEALF] HE(OTH), I, SMHIEPENERLF, b Bk =4 29 1177 % 57%,
ER AR, AR P2 5IE 10% 008 WA REFE A6 LK P4 o

A2 SN B, FATED T DMEEA T REHLEE (B 2-3D). e
W) LECIE S N AERBOR SR A 1%, BRI SR ENR B THE (single
electron transfer, SET) 42 W1 [l 3g, FFTE—N & X%t o B 5 & A2 516 % (proton
transfer, PT) AE Bi—/MEUR A RIS RO A IE, 2R )5 K C-C BRI AR Bk
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