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Methyltrioxorhenium-Catalyzed Dihydroxylation of
Alkenes

ABSTRACT

Allenes are a class of unique compounds with two m-orbitals
perpendicular to each other. Their special structure results in different
reactivities. Although controlling chemo-, regio-, and stereoselectivity
is always challenging, many applications have nevertheless been found
for these compounds, including halohydroxylation, seleno-
hydroxylation, and hydration, which provided useful synthetic
methods to introduce a hydroxyl group into the allene moiety. Despite
numerous reports on the transformations mentioned above,
dihydroxylation of allenes is still not sufficiently well developed.

Methyltrioxorhenium(VI1I) (MTO) is a highly efficient catalyst for
the activation of hydrogen peroxide, and it has been successfully
applied as a homogeneous catalyst in epoxidations, dihydroxylations,
and carbon-carbon double bond cleavage of various unsaturated
compounds such as alkenes, alkynes, conjugated dienes, allylic
alcohols, and aromatic compounds. Although catalytic applications of
MTO have been studied for more than two decades, MTO/H,0,
catalyzed dihydroxylations of allene derivatives remain undeveloped.

In this work, methyltrioxorhenium (MTO) is for the first time
applied as catalyst for the dihydroxylation of allenes in the presence of
hydrogen peroxide as oxidant. The regioselectivities turn out to be well
controlled, affording [-carbonyl-y-hydroxyl diphenyl phosphine
oxides as the only product. The paper includes the following sections.

Part I: Propose the main idea and experimental plan on the basis
of the research area groups, and literature percents.

Part Il: Optimization of the reaction conditions of
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methyltrioxorhenium-catalyzed highly selective dihydroxylation of
1,2-allenylic diphenyl phosphine oxides, including the variation of
solvents, temperature, catalyst and oxidant amounts. Finally, the
optimal reaction condition is achieved.

Part I1l: Extend the reaction to different types of substrates
including the dihydroxylation of single, double, three and four
substitiuted allenes.

Part IV: Based on chirality transfer experiments and ESI-MS
studies of ®O-labeled products, a possible mechanism, proceeding via
regioselective epoxidation of the electron-rich carbon-carbon double
bond, subsequent intermolecular nucleophilic attack of a water
molecule on the in situ formed epoxide via neighboring group
participation (NGP), and followed by rearrangement is proposed as the
major reaction pathway.

KEYWORDS: Methyltrioxorhenium, Allenes, Dihydroxylation,
Mechanism, Neighboring group participation, ESI-MS
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[ A B - SRR LA S R B SE PR o i L, BB 2 A sp? BB T
RIBAREE AT A A 5 R R R K E RERT, AN TR R RERTIU,  B00 b &Pl
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Fig. 1.1 Special construction of allenes
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WEEFATRE R, W R k.
COOH

HOOC

B 1.2 F—NMALERIBEILED
Fig. 1.2 The first synthetic allene compound

Sebr b, AR SR R RIS BRI e A T BRI R, R
BRI S B R BIRAE D . Bk, SEOAILEEE - S 2 S F B E
REHII R AR WO HERA S5 A o . FAAE 1890 4, fEMHHEE AL &1F M T
AR AR RS MR peridinin(& L.3)mt & Bk T, (HREEE
1971 SEHLEM A SE AR AE, WIHEY] T 80 M, B—FlGudmAEE
FT 2 F2AE T A5 (g e A i 3503 b 3 fucoxanthin (& 1.4) 'I7E 1914
OGS BHR T, HELEHSE T 50 ZEAHHIN,

AcO

peridinin
B 1.3 R peridinin F£5H)

Fig. 1.3 Peridinin structure of natural product

AcO

fucoxanthin

1.4 FARF=H) fucoxanthin K145

Fig. 1.4 Fucoxanthin structure of natural product
1.2 ARIBAREE AL SV 25 5 A
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2 TS AR R . Bl
TR BT T D 3o 25 AT e i 18 P 2Tl o s b 5 2 5 RS IR
RO, i) 4% A%y B Bl SR EUAR Bk (F 15D,

. ether
RMgBr + =— \ > \
Br R
R = alkyl
I HCHO Cul, Pr,NH
—_— + —
( n dioxane, reflux =
R = alkyl or aryl

B 1.5 RSB A& AR
Fig. 1.5 Simple allenes synthesis
AL AR 2- BRI AR AR U NE, AT LA 2 2% Al UG 1,2-1c#
A28, o 1, 2- B B R 25 S P IO R T B4 1, 2- B0 BE RPN 1, 2-
IR (18 1.6,

H20, R? RY
g \
oH R2 Rl HOACc R3 SOZPh
EtsN
PhSCI + RI—= 2 =
R® CHCl;  R® SOPh P,Ss ,
1
-78°C pyridine R R

CH2C|2 R3 SPh

B 1.6 1,2-BRIGFE A 1,2-BRIBZEA 1,2-BRIBZERRBER) &5
Fig. 1.6 (Propa-1,2-dien-1-ylsulfinyl)benzene. (propa-1,2-dien-1-ylsulfonyl)benzene
and phenyl(propa-1,2-dien-1-yl)sulfane synthesis
SFHEUR) 2-FelE b5 = 2R B U S S AT LA 46 1, 2- T 05 S i i
5 RS R B 4 1 2- BB AL A (B 1.7 B2
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R? R2 R1
_ EtsN
RI-=—+<R® , PCIOE), 2
OH THF R3 P(O)(OEY),
-78 °C~reflux
R2 R2 R1
_ EtsN
R—=—+R® .+ phrCl
OH THF R P(O)(Ph),
-78 °C~rt

B 1.7 12-BIFEBERRE AN 1,2- BB EBEE AL AW Ak
Fig. 1.7 Diethyl propa-1,2-dien-1-ylphosphonate and
diphenyl(propa-1,2-dien-1-yl)phosphine oxide synthesis
a- B 1,2- KM B B v] DL 2/ A B SRt e id =R AL &, o
I BB E 2 hrke sk, ARJEEEIRAL, B (B 1.8) B,

R2X Br,

O O (@)
M K2CO3 | PPh3 | NEtg
HaC Rl acetone pc R! CH,Cl, H3C R1 MeCN
reflux R2 reflux
B 1.8 1,2-BRAFEEA 1 & R

Fig. 1.8 1,2-allene ketones synthesis
£ = ZHEAF AT B SLAE SIS R R BAR 6 1,2- MG IR e tBal P
R bR AL BRI, AR5 55— FALBR AN EEAE O AR A AL T e e e A i
ol B (B 1.9) B,

Rl RS EtsN R R3
>—cocl + pPhp=< na
R2 COOEt 2tl2 R? COOEt
OH , | R? R!
Rl — l) MSC, Et3N, CHzc 2 - \ \/
R2  2) Pd(PPhy), THF, ROH, CO COOR
1.9 1,2-BRJGPRER F-A B

Fig. 1.9 1,2-allene acid esters synthesis
1,2- WM 2 w] Lhad et 22 P 9l 4, o nll i alad 1,2- 1000 IR e 7 At i) 2%
RGBS E T 40480k, RI5 5 AR B e
WG xR, SRR EAL AL R R K A (B 1.10) B,

[36.37],
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2 1 2 1
R R 1) NaOH R R
—_—
N
R3 COOEt 2) H30 R3 COOH
R 1) n-Buli R
\I ——
2) CO, COOH
OH 1) n-BuLi, LiBr, THF, -78 °C a1 n2
2) TsCl
R %
R2  3) Pd(PPhg), CO, THF, H,0 COOH
& 1.10 1,2-BEIFER B8] &

Fig. 1.10 1,2-allene acids synthesis
a-IB IE RT DA H 1,2- B R I B 1, 2-Fp6)eis i IR 7 ik 4% (18 1.12) B,

R? LiAIH, R?

/2 . THE, 0°C > Rl

0 HO

1 3
Rl\l :R3 DIBAL-H R\/ (R
(o]
R2 cooet @€ R? OH
B 1.11 o-BRIGBEE R &

Fig. 1.11 a-allene alcohols synthesis

a- BRI 26 Mitsunobu [ 7T BUR 46 19 o DA () 1.12) U041,

Rl

' 1) Phthalimide, DEAD, PPhy
R2 2) N2H4'H20 )—RZ
HO 3) TsCI, NEtg HN,
Ts

Bl 1.12 o-BRARB RE I %
Fig. 1.12 a-allene amines synthesis
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OH
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kumausallene
B 1.13 RAF=H) kumausallene F14£A B
Fig. 1.13 Synthesis of natural product kumausallene
Crimmins /MR AR HENE , 7E 2000 4F, FIH 57 A B 5 b [ B
AL T RARFAW laurallene (P 1.14) ¥,

/ ‘\\OH //
OH - '///A/ —>TBCO
3 7 HY—O
OB
: Br

1.14 RAR7=Y) laurallene FJ£E A%
Fig. 1.14 Synthesis of natural product laurallene
2 J& Ogasawara A1 Hayashi 55 A > VE AR A AR AL B TS R —HIlR
3-VR-1,3-3LHE IR AN NL,  PAAR G BOR BRI & e 1 y- IR IR R
SRJE G B SERBL SUR NE,  Fe A R SR 724 pheromone (B 1.15) 41,

laurallene

H,C(CO,Me),, CsOBU COOMe
n-Cng7/\(\ 2C(CO,Me), g n-CgHy :\4<
Br Pd(dba),, (R)-segphos /\:.:\ COOMe
71%, 77% ee H H
COOMe
— n-CgHy7 S
H H
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B 1.15 RARF=#) pheromone K25 Rk

Fig. 1.15 Synthesis of natural product pheromone
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T 1,2-BRIE I AR SRR KA R N, % RN Ry I B s — 2R
T A O g L, SR AR T T CUIBUR ) B A A R G
FrE (E 1.16) U, I AR T %R S SHLER N T AR 1403 2 15 L2

(E 1.17) B,
X R!

R? R! Conditions A/B/C/D
2
R3> <SOPh HOAgE SOPh
R
Cl R?
2 1
Rc, R ConditionsD R22:<
{ < SOPh
3 3
R SOPh R on

Conditions A: I, LiOAc, MeCN:H,O =71, rt;
Conditions B: CuBr,, actone/H,0;

Conditions C: NBS, LiOAc®2H,0, MeCN/H,0O;
Conditions D: CuChL*2H-0, silica gel, no solvent

1.16 1,2-BRHFE T AR 32 g 40 S B
Fig. 1.16 Halohydroxylation of (propa-1,2-dien-1-ylsulfinyl)benzene
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ON ~Ph ‘o Ph

, Sy _ OH
., : |5, LIOAC *2H,0 . S,
2 20 Lo
H MeCN:H,O = 7:1 rt H
|

//*6?Aph + Ph
7, SV 7, O~ ~-. .
I H H

iR 117 1,2-BeMf B AR sk I ML
Fig. 1.17 Halohydroxylation mechamism of (propa-1,2-dien-1-ylsulfinyl)benzene
KT 1,2- BT A AL R R, (B 1.18) 4, 2 s i) B 1) A=
TR AT RIS, SRR T NG R T R AR, O HE
R XS EATI SRIRAUE W] Vi AR SR, R, 1 2- B AL S
WIS SR SR R B [ AR 2 S R (] 1.19) [,
Br
_ﬁ\::‘:\ v gy, MeCNTL HOT /——gb:\So N
SO,Ph 30 min 30 min R OH 2
&l 1.18 1,2-BRMFEEAR AR R B
Fig. 1.18 Bromhydroxylation of (propa-1,2-dien-1-ylsulfonyl)benzene
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+
) Br
\:.; 2 equiv. Bry —
_ L0 )
055 Br  MeCN,rt .S Brs
o) 0 B
r

cisitrans = 1:1

ZEX-SF 2R B T HHIE

\1) MeCN, 0 °C

2) H,0, 0 °C, 30 min

Br
1) 1.2 equiv. Br,, MeCN, 0 °C —
0,S Br
OH

2) H,0, 0 °C
B 1.19 1,2-BRFEEMIIRAL 7 R 2
Fig. 1.19 Bromhydroxylation mechamism of (propa-1,2-dien-1-ylsulfonyl)benzene
X T 1, 2- B0 B R SR A S AN 1,2- B0 SR A K 2R AL S W 152 b A RS
PR SIARGE RS 1,2-IB00R FE M ARAL S 1, 2- I EE RS AL & P i)
BRGNS, BB — A R T R (B 1.20) 9984,

RS R?

Rz\l :Rl Conditions A/B/C Hoﬁg_{zl

R® FG X  FG

Conditions A for FG = SPh: |,, acetone:H,0 =4:1, rt;
Conditions B for FG = SPh: Br,, Na,CO3, MeCN:H,0 = 4:1, 0 °C;
Conditions C for FG = SePh: I,, N,, MeCN:H,0 =4:1,0 °C

& 1.20 1,2-BRMBFEANEEA 1,2- BRI FEBR BRI s 46 [ R
Fig. 1.20 Halohydroxylation of phenyl(propa-1,2-dien-1-yl)selane and

phenyl(propa-1,2-dien-1-yl)sulfane
HE FLARSE 230 K, SR T AT RR SRR () 1.21) 1904,
BIERL S AR IS, o N IS TR IE PR RS 7 7] LA R A2 3K Lewis TR .
SRS A 7/ B A ML LY S R T S R AR < Ol S S I & =g (B 71
Lewis fisl . Lewis BRAN Lewis Bl 1 AH ILAE TR E 1 1% L) SLAR I BEVE  SR)A
FEOr T AR 7R AL SR LIRS, 3T R IR P B L R B Al B S 1 LI )
BB XU 2 S 45 8 v Te) A, i e o A A5 R 4
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R2 R1
HOﬂiffl
R3 XPh -
Y XPh
Y, ‘ H,0
R2 Rl R2 1
>::< RB\/ /R
3 \+/—/\
R XPh Yo &Ph
Y2
X=S,Y=lor Br;
X =Se,Y =1

Bl 1.21 W RBHY R B
Fig. 1.21 Possible reaction mechanism
X B-IDCJ R R AL S W) B FR I S S, 12 s N B — ST AR e #3812 (1)
AR T SRR (B 1.22)1,
R3 Ar, rt

+ 1y >
- CH3N02:H20 =51
') 0]

B 1.22 B-Tk M e B R AL = B
Fig. 1.22 lodohydroxylation of g-allene furan ketones
BT oI s, R TN RNV, B-TAE B AL S ) Sy T
AN 5 NSRS T 2T R 1 TV S e e Sl TR N TS 6 2 < g R BUIR T8
HF RY, R BURIE R R (1 A7 B ARRE, 5 BUK 37 I BRSNS — I e 2%
WIS BT, mAERRAFEY (F1.23) B,
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less hindered

H. H
Va 0

4 RS 4 RS
R”. H R-. J H
I+ — R3 I+ — R3
R RL /™
2 2
RZ"Ng” 0O R®" N7 O
HI Z-product
2
RZ H
3 "3
RS Rl —
RPNy 0
H H | H
I+ — RS3 R4/('I+ — R3 — RS
R4\ R5 Rl — R5> Rl — HO4 Rl J—
R"55
2 2 R
H H E-product
hindered

1.23 BT R MR AL = B AL 2
Fig 1.23 lodohydroxylation mechanism of p-allene furan ketones
fE 2008 4, #RkiE 1 3-777E-12-BRIEIL S VIR AL OB 2 NAE ]
Selectfluor 7F AR, LR BRI Y 2,3- X0 b v IX S 3 Mk (0 A i T 2-98-2-
R A (] 1.24) 19,
=

Cl
A Aﬂ_ ~ MeCN:H,0 =101 OH
== 4 e "

rt
R R

F

B 1.24 3-55%-1,2- B b & W 32 AL R L
Fig. 1.24 Fluohydroxylation of 3-aryl-1,2-allene
ZJa XN 1,2-BR AL B A S RO FR R S N AT T IT AT, SR H T E
XF AR A & VR B AL SO B HIARHE SR A, R ALY 1,2-F A
B B A AL A ST = U, 125 AT B — () 2 i e SRR AL 4
2 1,2- M B i A A 5 0 0 B AR DY B » 122 S5 AN BEMBUR 3847 (B 1.25)

[67]
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1
R? R! MeCN:H,0 = 1:5 I R
o " &
R® POPh: 4 equiv. rt HO—-R? P(O)(Ph),

R3
Ar AgNOg3 (6 equiv.) - | Ar

* k2 MecNH,0=15 J:<
P(O)(Ph); 4 equiv. rt HO P(0)(Ph),

& 1.25 1,2- Bl B AL e D KR BUL R M
Fig. 1.25 lodohydroxylation of diphenyl(propa-1,2-dien-1-yl)phosphine oxide
(e B 5ot il - JER A 8 S ML 3R AT TR TE IS S R il T LA
R B R AL AP DT () 1.26) B,

R, MeCN:H,0 =15 N
P(O)(Ph); ' 4eléuiv_ rt HOAQR_\P(O)(Ph)z

R\I\ MeCN:H,0 =1:5 4>:\
PO)Ph) 4eI;uiv. rt HO 4 P(0)(Ph),

1.26 P4 12- BB EBAL W RERBUL R M
Fig. 1.26 lodohydroxylation of axially chirality
diphenyl(propa-1,2-dien-1-yl)phosphine oxide
M HL, S IFER T 2R R SRR . 8l PO ARic iR
A=, SR R S RS 5 R 73 3 AR AR P MR L P AT T 2 R
W, AEM] TSRS HUEE (& 1.27) 7 @ Uil TR R AR L 1
WIS 5 LB R
-

P ~ I n-Pr—.1s I
n-Pr n-Pr :*°OH,
=l=< \_)> (_| T/ — > - +/‘ 4)_<
ZO,P(Ph)z
s

, ,P(Ph P(Ph)z
O,P(Ph)z »\Q/ (Ph)2

B 1.27 1,2-BRIGZEBEE M A W2 RUL R R 2
Fig. 1.27 lodohydroxylation mechanism of diphenyl(propa-1,2-dien-1-yl)phosphine
oxide
2 JG1E 2009 4, JoséLuis Garc & Ruano %5 Al T 2 AR R JE JE 3G 1L Ik
s A 0 s X el 6 R e ST AR B O A S ([ 1.28) 9,
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I,/LIOAC (or NBS) R,
CH3CN, H20, 0°C .'\S

Tol* ©
X=Br, |

B 1.28 & ARBREANE BRI &Y B s R M
Fig. 1.28 Halohydroxylation of Non-activated Allenes Mediated by a Remote
Sulfinyl Group
1.3.2 Ik B PR AR AL S5
TG VI 2 s AL S NI 7E, BRAE WA e /N2t — 25 [ it e s
TBIERNE DAL N . 7E 2007 FE4RIE T 1,2-Bc0s 5 R &P &
[X Jaf3d 6 Atk R g ST AR B AR AL S, (B 1.29) 19,

HO R,
R
Ph(0)S 2 CH5;CN/H,0=10:1 Ph(0)S Rs
+ PhSeCl - —
R Rs rt R, SePh
B 1.29 1,2-BRJ & AR KR AR AL I B

Fig. 1.29 Selenohydroxylation reaction of 1,2-allenylic sulfoxides
ZJ7 2009 FFARIE 1 1,2-ekh B B R AL SRR AL S v, I HIB I T
SR B8 AT T I SRR WLER HEAT 1 0F 9T, 5 2 AT HRE R IR R AL s ML 2R
KULNAE S HHLE (K 1300 .

Ph,(O)P, R HO R:

2(0) 2 CH3CN/H,0 = 10: 1 Phy(O)R R;
+ PhSeCl - —

Ri Ra rt R;  SePh

1.30 1,2- By EBE S S W R AL R M
Fig. 1.30 Selenohydroxylation reaction of 1,2-allenyl phosphine oxides
1.3.3 M YK A AL S B
FE T I AL S VDI 72 A s SRR Al A s B2 RO RIE 5, TR A= A I /N2
SO BRA B 7K B A SR BT TIRAIREFE, £ 2010 FE4RIE 1 1,2- M 5k AR
KAk AT DX S PRV R ST A R B K A b RN (B 1.31) T,
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Rs Ry
R1OS: 1R4 HOAG, 60 °C R1OS>_8LOH
Rz R3 24 h R, H

Bl 1.31 1,2-BRIHZE L HIK A6 R B
Fig. 1.31 Hydration of 1,2-allenylic sulfoxides
Z HITE 2009 4F Widenhoefer /NH & AR IE | < J M AL T BB IR R AL &)

[ 7K £ 1 IS R i 438 P AR SR 0 1 38 e A R AR A (1 1.32) T,

Ri (1)AUCI, AgoTf OH

\
R, dioxane, rt R Z R;

Bl 1.32 BRABHIZK A0 R R
Fig. 1.32 Hydration of allenes
1.3.4 BRI R RUR HeAE & B
£ 1996 £, Cazes 1 1] OsO4 1FE A MEALTT E R SEIL 1 BeMi Ak & P ) WSk
b (B 1.33) VO, (ERZ R MAMY P2 AR AR, 1 HL X ik Bt AR 2

R3 R OsOy4 (e] 1)
—— > R3 R'  + 1
R2 n equiv. NMO \)J\ﬁRz HO\H& iz
Acetone / water (1/2) - 20 °C OH

R3
B 1.33 OsO, LI IR IR ZEAL S B
Fig. 1.33 OsO, catalyzed dihydroxylation of allenes
ZJii» Fleming 538 1 ANXIFR A IR S VI XGRS OB (8] 1.34)
PS80 R iy AT B EAR 5 B B 1 A P LA R 1 DX g PR AR P S e
K. 48 F 2 BRI AL & VDR AT DR B A S AN, S 7 ) IX delide 458 4

W2, LA RR R MAREAR, KA ME 0L T A Bt k. i A
Xt BN ML B BEATHIE T o
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O
Ph—\ AD /\)j\
—— > Ph Y
30% yield OH
77% ee
OH O OH OH
CsHiz  AD
/I/ S Ph)\ﬂA%Hm + Ph)Y%"Hs + F’h)YkCGHw
Ph O O (0]

< 40% < 28% <20%

B 1.34 AXHRFE ELIBAR FIXCRHAL ) M
Fig. 1.34 Dihydroxylation of asymmetric simple allene

1.3.5 WM (10 75 S S b

FF T2 Fh g Jm A BT, A UG e A & o &R e RERTER A R
W ARENE, MHRZES TEM, e, Wik, AHMhTEEE
HIIZ SR RIS R, I BRI < R A PR B B A B R S B i
FEIEHEENMEA. (£ 1997 4, Miyaura 15 IKIRIE T A LIRS I B
LB AR R (B 1.35) B, ik 2 J5 3o I 40 1 Ak AT HLIR R 5 AN fh
RIS N AE g SR A WL 22 R B T — KW T #A

3 mol% [Rh(CO),(acac) / dpphb] R® O
v rosony, - 1L
RITX R2 aqueous solvent, 50 °C R1 R2

B 1.35 SEMEALA DI B I3 L5 s = M
Fig. 1.35 Rh catalyzed organic boric acid conjugate addition reaction of ketene
Ak, BRI AE R AR AL TR B BN ORI BN T A BL A AL
o Horb, BRI S5 AN R AR EEAT NG, Az B (e - i B e - A iR 1
BN, gl T REAE IR Had, WHEWR EUF, BTkt
SEARGEFEPEAN X IR FENEHIAAAE, MY HZ RFIBCH RN i s i AT e A= i\
Ay (B 1.36) Mo R, A SRARE RO AN R R SR, st as A
R B NL ARG SR R L ST AR08 PN X A ade A ) 1) L
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R? Zz R®
2 3
RS . —
R4 R2

Rl R3 Rl RZ
RZ R4 R3 R4
e, W w e

R* R®
Bl 1.36 [ HZ S BRI s 5 B
Fig. 1.36 HZ couplet addition reaction of allenes
Hh R e b A LA ST 78 B R AR B B L/ NAAE R A T T T — R
FIIBETE, JFRJE TAEFOEMELL T 77 2R 5 Bl S RIS s bz, - B
Wk o7 BN . £ 2003 £F, EHIRIRIE 1 AT LML S A LGS
Wt A R B (B 1.37) A,

10 mol% HOAc

. 3 mol% Pd(PPhy), AT
=== + ArB(OH > =\
R (OH): dioxane, 50 °C R

major

B 1.37 AT B B D5 B AR
Fig. 1.37 Pd catalyzed aryl hydrogenation reaction of allenes
FEBRIEZRAE T o, B- S y- BRI ER HE AL S VAT T AE R BE AL T 5 5 A 07
BERNIR K A 57 B R A OB, I HL ey DX AT ST A R I B A e =L
REPUBAR IR (B 1.38) BA, E R T b SEEU R fR Bl , 1 SV MY
X Jafide PR R RIS A i e Y G Y

2 1
R R! 10 mol% Pd(PPhs), AR
1 + ABOM: T molo HOA
mol“o C 2
R COOEt
COOEt THF, rt
10 mol% Pd(PPhy), AT
\ +  AB(OH), —
COOEt 100 mol% HOAc COOE!
THF, 1t
R? Ar,  R?
R3 ABOH 10 mol% Pd(PPhs), H—:’
+ r
»—-coome O 0 mol HoAC COOMe
R?2  COOMe THF, rt R2  COOMe

B 1.38 AL T BRIGER R A0 55 H S AL R M

Fig. 1.38 Pd catalyzed aryl hydrogenation reaction of allenes ester

f£ 2006 F, Hayashi /NHIRIE | EREMELL T 75 FE0IR 5 O AL & VI A

16



LT AL R AR A8 3

TEFR T T A o %N R AR T S ALY, i HL L Xk PG b
5 R A B e /N 2HL BT 4R TE O 7E R 14 2% 2F T 4B AL BRI AL & W 55 SR AL O v
SRR (18 1.39) B,

R 5 mol% [Rh(OH)((R)-bi nl
( + ABOH), mol% [Rh( )(i ) |nap)]2= /]‘\/R

F:’(O)th

Bl 1.39 SEMEALT BRI AR5 AR B
Fig. 1.39 Rh catalyzed asymmetry aryl hydrogenation reaction of allenes

H1T 12-BRIAFEORAT 1, 2-F5cA 5 AR AR B B ) &5 2 IR 1 R AL &
Wy, T LA T A, AT DA RGRAT, T I A R R ) S R O
T3y o, B-ANE AT BRAL S0 A L& b2 AR & LA P& P Rl
(3941 iy L3 X ki Pk ) & J o B- AN BRURIIE B & 7 A AL A plrh L
AEEZ S, FANEAILERIES B — DA PR IR PR . FRAE
BN T — BAERRIR AT T AL Ty IR 5 1.2- K0 L kAL
EU12- M ST S VIR NS RONE,  ANTIT A 22 i P e Xk ¢
PRI LA B B T o B- AR B &4 (I 1.40) B9,

R? R?
R 10 mol% Pd(PPh3), R! R
+ R2-B(OH), > TN +
SO,Ph 100 mol% AcOH SO,Ph SO,Ph
THF, rt E

R
SOPh 10 mol% Pd(PPh3),

R
N -
- 7 + +
“_SOPh
+ 100 mol% AcOH /K/
z

SOPh SOPh
R-B(OH), THF, rt E

1.40 SEMEAL T 1.2-BRMGEEAN 1,2- oMk AR i) 5 R AL I BL
Fig. 1.40 Pd catalyzed aryl hydrogenation reaction of

(propa-1,2-dien-1-ylsulfonyl)benzene and (propa-1,2-dien-1-ylsulfinyl)benzene

HI T 1,2-I5cHs 2 BRI i th 2 IR BB A 5 2R R 7 NI RAL &9, IR H A
AARH IR RIETE . T34h, BRI &) — B B R A i A B 1,
1M H. o, B-ANEABEREE S AL & P B2 A A A AL P AR AL &
BRIz N AR 1,2-1500 R IR BR SR AL S W B HEAT 1 57 S A OB 9T, JF
RE TR AL T TR S 1,2- BRI R B AL S BN R S
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I Hmte s ek X B A R LA B E I S R T o, B- AN A%
MR A (F 1.41) B3,

R3

R1 R2 10 mol% Pd(PPh3)4 R1 R2
+ R3-B(OH), - X
THF, rt E

Bl 1.41 SBMEALT 1,2-BR)am L BERR IR 0 05 S AL RN
Fig. 1.41 Pd catalyzed aryl hydrogenation reaction of diethyl
propa-1,2-dien-1-ylphosphonate

Xt F- ] BB AL B VDI 57 SR S SN RAE B B N BEEAT TS, O
B A O ] L e BB 57, BRRIRIBIA A S, D5 R
A S AT A ey [X g 43 A v ST A 48 6 M 1) e 2 A BB 1) AR S - B XU I
R A= BRI R, OB BT A 2 U R BE A R2 T . X T 55
FERUC T S IcH, B — B A U =B e . J3 8k, 57 Rl 57 346 B HY
AT R LT RIONE, X he i A 1 ] B BBA A 5 40 07 2 S A S L R SR R 1R i
A BRI, X 57 BB T BB AL 5 P 07 S A S B B — B R
i o 7 JR A A o] BRLIBR I A 50 B B 95 34 RS ) v RN AN i AL
R (F 1.42) B3,

R2 R2 R2
=\ 10 mol% Pd(PPhs),
R! > /g + )\/R1 + /J‘\
+ 100 mol% HOAc R R
R?-B(OH), dioxane, reflux, 9 h E z

R
10 mol% Pd(PPhs), /)\7

A\ + R- > X
Ar BOOH)Y2 400 mol% HOAG 1

dioxane, reflux, 5 h E

Bl 1.42 SEAEAL T frudk BUARAN S5 2 U RT BLIRHA B 05 S AL R L
Fig. 1.42 Pd catalyzed aryl hydrogenation reaction of alkyl and aryl substituted
simply allenes
1.3.6 i i 0 o0 AL S L
Wk AR 1 A S B e AR H s, JF H E e s RN Tk A
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IO R LA SRR R, UL RS A AR AL
SR PEYE . X B MR S A B A () 1.43) 1O,

RS R4

1, 2-hydrogenation — —
- R4 Rl + R3 Rl
R? R?
R? R?
R3 R1 .
2, 3-hydrogenation — —
: { > R3 R2 + R3 Rl
R4 R2 R4 R4
complete RY
hydrogenation
> R® R?
R4

Bl 1.43 BMBEAL RN AAAE A Rk ) R
Fig. 1.43 Selective hydrogenation of allenes problem present in the reaction
£ 1963 £, Brown NHEXIRIE 1 2,3-F RIS SO, A E e
HIR RN 2,3-F IR EA =, RNV ARZ PRGN FIEPEE, &
I 22 R A5 B VYRR & 0 S, Rz R 2 (K 1.44)

[102]
Liork /N T\ /_\_/_ﬁ
n-C5H1\1 with or without MeOH + L
VO NHg(),-33°C /N /T \ __/__\__/__/
& 1.44 2,3-F IF ISR B
Fig. 1.44 Hydrogenation of nona-2,3-diene

£ 1975 4, Gore /NMHARIE T A LiAIH, 5% LiAIH3(OMe) X} & #2 3 Bt
WA S AN, 2R A S B« DX R AN AL A P AR

WZE. MH, XTRZLBURY), EiZRNARRPIRIERER, RN ZE R0
TR B EB AL S A B X S PR 2 (B 1.45) D99,
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1
OH , 1) LiAH, o LIAH3(OMe) R -
RL R THF s : >=75
R2 \:.:< RQ— R* + RZ =X
i 2)H0 4
OH R? R®
R 1) LiAIH, or LiAH(OMe) S ( = <
ARZQ:\Z.:\/R:% THF :&_/: R+ R>I
" 2) H,0 R2
HOU Re | 1)LiAlH, or LiAHz(OMe)
o R R 1 g
1
R 15 2) Hy0

__ 1) LiAlHg, THF
2) H,O
1.45 FF LiAIH, Bk LiAIH;(OMe)StBEME AL A RIS Ak R B
Fig. 1.45 The use of LiAIH4or LiAlH3(OMe) hydrogenation of allenes
£ 1975 4F, Crombie /NHARIE | FIH Pd-BaSO4 A I 1 Z 4k S,

EREAE1Z SN AA 2 A SN IR R TR VA IR ], 15 BB i S 2
=g & (B 1.46) 004,

3 1
R R R2

o 2 5 mol% Pd-BaSO, R34(_<R2
Rl R4

&l 1.46 Pd-BaSO, i AL IR) IS AL [ R
Fig. 1.46 Pd-BaSO, catalyzed hydrogenation of allenes
£ 1990 4, Hammerschmidt /NH#iIE | Pd-CaCOs fiEAY, 1,2-HKM R IR
R AR L, FEAZR NG E] T =M, SPertthdRs 2= (K
1.47) 1%l
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/o P(O)(OEt),
+
H, N
P(O)(OEt), 5 mol% Pd-CaCO; P(O)(OEt),
(.
P(O)(OEt),

[ 1.47 Pd-CaCOs # 4k 1,2- TR/ 2 B RR I Y AL [ B
Fig. 1.47 Pd-CaCO; catalyzed hydrogenation of diethyl
propa-1,2-dien-1-ylphosphonate
TR 7 I A A N BT I, BRAE B B /NLARGE 1 1,2- R L B R
BRI BRI SRS FEIRMFLE T, w7 i s e PR R % )
FEFR D SN NI B, BEA AR e e A AR G, B — X Bk A A
MG SV o T = % LU R XU |, B — ST AR IR R 0 28 B 2
Ko, T A AR R EYE (K 1.48) DO,

R1
R2 R 1 mol% b —
= R? P(O)(OEt),
R® P(O)(OEt), H2(1atm) R?
THF, rt, 24 h z

b: R' = OMe, R?2 = COOMe

Bl 1.48 SEMEALTS 12- oM HEBERR IR I3 7 AL R BL
Fig. 1.48 Pd catalyzed partially hydrogenation of diethyl
propa-1,2-dien-1-ylphosphonate
Al R IE 1 HAB SRR B S EE 7> S AN, 4. 1,2-3RJ JE %
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AW, 12-BIGRNEEEY), 1,2-BG 3R AW, 1,2- a2t
EWEE, ERIEEANAE TS, e RN L 0 DX S B A S AR IR PR
RCH T B By S (K 1.49) 110
R'  H,(1atm) R' R
/ R =
R2 1mol%b R2 R2
THF, rt z E

B 1.49 HEALT FAhSRRUBOR IR0 A4 R M
Fig. 1.49 Pd catalyzed hydrogenation of other allenes

1.3.7 WM (0 2 R B AL S

ARFITEAL, Hil B AR A AR - AN AT B, R b FIX e
WAV NAZ AT LUK AE ST B SO o (HR S b, R R R s ) S T
WESH TIRATI, BRIR BN G s 70 (B T %
2 R A s N i TE T PR AR /D, 3R vl TR ) S AL S B A AR
i etk o AR IR PR AN X A Bk B 1) R, [ IS A il 2 R AN R R g A
IR Y. BIHATYIE, RARRAE B LN RTBRE 7GRS
IR P B SN, 3 1,2- 00 S B &4, 1, 2- MG L IR e S 54
TP — AR R y- IR SR SR . EIRSEIL T Bl A A e e B Y
RGN, R T — Pl 4 y- SRS A S R T (B 1.50) T,

R 3 mol% RhH(CO)(PPhjy)s R
10 mol% PPh
2 2 . OHC/\\/J\HOXR%Z
P(O)(R%), CO +H,

toluene, 100 °C, 24 h

1.50 R A P AL ) N
Fig. 1.50 Hydroformylation of allenes

1.4 FF 3 = SH AL BRI TR A

L =SBk (MTO), 2 MEAHETIRERANIILED, M2 F
B B I G R A LA, B R R AL RS, R I
A LU % 5 W s L & 4. B MTO Jy At B (AR A, 4
AARF L IRE, RERSVR IR T R EA LA . MTO AR Z HAps A 1k
i, ESEARE A S Hl %, 1 H AR IR IE I TR KR SE IAEAE

22



LT AL R AR A8 3

B2 24 MTO 275 Bl i rp ik s K, i 2E i Bk R &

FLAE 1979 4F F B =S Bkl L84 B, +2 Beattie A1 Jones 7 ffil £ VU HY
FEABRA = B A BRI S, AR R T R IR RS ORI
ERREV AR I, SRS B AT e, BRASE] T AR, L)
Rtk A MY 25 gn & 4 Al WX R AL & o R 3k = A Bk

(CH3ReO3—MTO) . X2 — Rl Y 1) 4 JE e Ab 77, s 75 1) B B fEE A 14 e
RPN IRE] T, AHS2 BT 24 B & O EAUN Re % & i 4R /D &
() Lz e 2 = AL BRAL S, B LS AATIIEE X MTO (&I TIR A
FRIBFE 5T o

FLF] 1988 4 Herrmann /NAARTE 1 —Ff fisf 80 1717 v 2800 ) B AU — 8R4k
AR G AR DU SR AT R RS A R T MTO th & (B 1.5 18,
MTO b &) A AT AR B & it ok, AT MTO Ak & 4 R A A0 82 A
A TSR S A Bk R, i BARWTOR T N AV X R R A A
TR S AN R B R N T, BT R R AR TR SO ) =
Bk, TR RIS BT A .

~Sn(CH
THE 9H3 Q n( 3)3
Re,0; + Sn(CHz); —— O:Re:0 + 0:Re:0
I
o) o)

151 =S MBREE R
Fig. 1.51 Synthesis of Methyltrioxorhenium
£ 1992 £ Herrmann /N H 2k = S AL BRAL S DI 5 O TR IR
HRIE 18 ] B R AN Y R R B b A B S AR FR IO B AL R
BREHALEY) (Fln: NEURIRED, JLFRLUE &R A& K MTO (L&)
(F 1.52) B,

F

R F F
F
R F THF CHs R
Re,0;, + F F + Sn(CH3z); —— O:Re:0 + F F
0~ S0 0] (H3C)3SnO 5 & OSn(CH3)3

O

B 1.52 RE=SMHKIER
Fig. 1.52 Synthesis of Methyltrioxorhenium
1 T g AR IR A & W AE I ) 2 < B BORBURS AN A IS [R) RS 8 A7 AE
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1M H. s R TR BTAL &4 S B Bt o [ Herrmann /NHIEARIE T 55 — Mg i
BRI =R S A O %, BUEIR T B TR = RS
FE LRI OB, S P 2 SO S =SBRSBI, i A A

FEE =8Bk, P b s (B 1.53) 1,

Re;07 + (CH3)3SICl CHACN CIReO3 + (HaC)sSix-Si(CHa)s

CIReO3; + Sn(CHs), W CH3ReO3+ (CH3)3SnCl
3

B 1.53 FE=FMBKK AR
Fig. 1.53 Synthesis of Methyltrioxorhenium
B, ERRINERRA N ARE RIEA, BB B Sk Ak
U, R D
ZJa #1997 FE AR B R BRER AR vT LU BB oA BRI S it AT OB
JRCR B = SR S (P 1.54) 120, i g 7 B Jon 7 O A R B Jim 2 5 4
il o

AgReO4 + (CH3)3SIC| CT:;,CN> CIReO3 + (H3C)3SI\O/SI(CH3)3 + AgC|

CIReO3 + Sn(CHj3), CH3ReO3+ (CH3)3SnCl

CH5CN

B 1.54 FHE=ENHKKE K
Fig. 1.54 Synthesis of Methyltrioxorhenium

1.5 F 3 =S AL BRAC &Y T

F = S BRI T S T 1991 4258 — A& Bt >k, 31 H AT HRIE Y MTO
BLEV ey 5, KREHACEVINNEIE . BRILIE & HATAED &)
(211251 FL7F 1989 4F, Herrmann /ML CA Gl 728/ 110 H 2L =
AL BRI I 2 A I S 2012 A A I B I L) 1999 4F, X e/
gy 1) 2 = A BRI e SR L &) 4 2R *mﬁmém PR SR (A
1.55) U8 Sxubmi A e e e R 2, ERREAT RAsia g fra L
T T
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R
CH3 CH;

X Et,O —
AR R N W
B 1.55 /M3F MTO Rt B RC AP & R
Fig. 1.55 Synthesis of small molecule MTO pyridine single tooth complexes
fE 2001 4, Fritz E. Kithn, Paula Ferreira 25 A\ 4RI T 2 = S A0k S it
W AT FEME RS A 101 RN AR B R 3 = AR BRI L S (1 15600,
EIRXUATBC & ) L B A G S P Re e PR, (LSRRG IR 3R 58 AR BURK,
FEZ TP WA AT E FIAFAE . 21X I = SRR S P 21 1 3 =
S BRAEALIBCH R S MLAR 28 TR i, AR BENE A RO T34 S S (i & 2B, I H
R R B 1) A A AL A O, T IR R S R 1 R, R
A FAE AL FIRAE A -

N
CH3 N/ /
Et,O CHs \
O:R|I|e:O * —»2 /
- 0 /
o) N/ \ 78°C /O\ 7 \

& 1.56 MTO KX KR SHIHI &
Fig. 1.56 Synthesis of MTO bidentate complexes

JRE B2 GM TIRE WL =S R BC &1, (ER A BEAE 2T
I TR RS E AL, T H P2 =SSR EC S A R B LU —, #E &R
Bk N R 72 5B, B RI AR R 75 B 5 = A BRIC AL AR IE

EL# 2006 £F, Fritz E. Kthn SR8 A E RARGE 18 568 FK g sl B A
RGN S B A A RO AR, 8RS R = AR 11
Rty i 7 R AR R A (B 1.57) 92, sebgeny, axubpi sy
i e (o 7 2 A2 Be 1 b By et b U 1 5 PR 3k = S Bk Bk R
Br, BRI AL = M UHESE M) . IX SR S YIRS PE AR AR It =R
AT AORAFAR A o IXFPT L &40 (10 oot R 8 = S AL BRI S WD AT —
AN R SRBE, 5 B WA A B2 RON v U AL RN T4k S e IR A 4R
G

J
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73
= I \—R
X \_R >N
G0 g OO
* ORe:O ——
OH o R \¢Hs
R O=Re:=0

& 1.57 MTO & REREC & W HIE %
Fig. 1.57 Synthesis of MTO Schiff base complexes

1.6 F 5 =S AL BRI AL H]

1.6.1 F 2 = SR AL B R A iod S A S0 I e RO P LA S B

WA EDZATRINE IR T IR A4 oo 9. 3R a4
HATARHE I MR PEAASK A7, prAE AR5 s i NS R, rT AR Z Rk &4
KNG, Tz BT RIS TR BEae. AR, WIRSEVF 2 AA0 2 M
ERF . R, RSP AR A LG R R ARG FLAL R
W H R 2 AR AL B I A B SR B N, P 3R SR A AT e 2
HEAEY. SRRFREY. A, DAL A SRR EALTFIA R
Wk, R4 A EAL S VIR, AR A A ML S A SV iE
JE 7, JE R R RIS VS R BI N R AT 2 . O T R AE AR
R, AATEH] T8 (H02) 1RSSR LB R B3 AL
PLo X2 ROy AL A L A A A B2 LR, AR R X AR
5. b R AR R R A BRI, AR, 4 U A A A A
FUEAT M koA E A SRR S | T L b e 1 1 S A SR Ve AR R RE 22 LE
Bom, HIEMTEMERAEMGRRATRER . Kk, BELHAESA
kg, b i AR s AL, RO HEAL T I 6 R B 1 B I
JREEEY .

M2 2 SERT TR IV 2 1 R BC S WA T AR fiEAe 5], SEailad
SNSRI HIPR AR, . RERREKIS. kGt B =4k
Bk (MTO) WL Sl &7, JR M2 R & 0L K 2 4 8 S e
(9902 . JH o R = SR S A ) S B SR S SR R 3R SR, U
b AR ARG 5 22 (A s A0 ol B = R BR Y 2 ) % LU e e 2, 50

0
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AR P2 AR IR A s P 17 HL 3k =S ki A4k
SR RIEFTE AR LT ERRER 6 R A FR B IR 34T o8
BB R AR S iR RS, TR & 13 A e 2 1)
B. AR, HTREZSMREETOERYE, SEUGRTRELYIFIRE
R RERI P, BAAG T AR A B ()6 R 38 = S AL BRTE I R R S A S B HR R R

fE 1997 4, Sharpless 25 A\M# X445 3¢ 7 iy F 3k = S Ak kit S8 AL S HE AL A
RPN R 77 &R 5 Wk, . mkeE. sRme. 3-ZJE R nE S, Al
PLAE G S B TR IR R =4 (0 AR A, I A2 R T 8% 5 BT R = A A R T
A RTE PR FE mpRe A1 bpRe (1] 1.58) R4Sl 2o Y455 T L =
AL BRI A A R B & P I B B TR, AT G T IR 1 T
o X EEL A0 KR H UK, T HAR 2R 5 = Bk S AU
WNEENEY), BEFEURPRAEF R,

CHy CH CHy
| o, O | ° mo, P<l.0
,/Fle\;.o - | _Re=0 - O-—-‘?e _.___\O
0% \ 07\ X
S 0 O no
mpRe bpRe

&l 1.58 FHEE=SBRIEEF mpRe F1 bpRe
Fig. 1.58 Methyltrioxorhenium active species mpRe and bpRe
£ 2012 £, Yamazaki /NHRIE 1 18] H 2k = A AL BRT AL AL A S
I 3-FREEREBE(E s N, SR BeVE ISR AE R X H IR AP XX
BEREAT T IR EAGET T (P 1.59) 101 R T e ek 1) py s PR A 3 1 e R

[PIR AL T= W)
H,0, 2 mol% MTO

10 mol% 3-MePz O
SN NP PN
OH - OH
OH H,0, 5 mol% MTO OH
10 mol% 3-MePz O
X >
CH,Cl, 8 h
83% (GC)

B 1.59 J&AEE PR EAL R B

Fig. 1.59 Allylalcohol epoxidation reaction
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Altmann 25 \PUSATE 2012 SER3E T AR 4 0% 5 il in A\ 1) 6
AR EAL A AL S S AR R 1-E I AR I AT IR A AL, S HAE
PR DL ) SR AV A R AR AR AR T 4, AR % 5 Wi Ak 3R AN
[F) AF AR AR IE 1 ) B 3 = S A B A8 A S PR A A 3 R DN AS [T E 1) 10 £
JE RALHEC ST 1-"F 0 AR I AT PR AL OB, 2 11 3 U 1 I b 2
FRIZE I ey T AR R T A Rk, i BT AL R i, X2 ARG
PRARTF 17 1 R = AL BR I FE RN, RIS T O AR E 2 MR A S B Ak
R E A

2013 4F Kihn /NHIHRGE T A IR BUR Ak A 1 9 F L = S0k Bk i1
BCAR A 2] MTO/H,0, bR R, =& b AV = I TR A e 4 AT
WEA M, X BAAS MTO TR &Y tbisda e, NG HRAR &
B AL R A AR AT

FIRE, L = S0 R th ] DU A b R S 4 e VR A S B o
RE et MTO/MM,O, b 8L B & A AMBAXUER I AL &Y, ReEd&E
AR T, R A A A RN
1.6.2 FF 2 = S AR ke A I A s T 0 P 1) e

FIHACNIE, C&F 7 REIRT HEE =S PR A B A R R A 1 4oE
(61581 24 MTO. JfbE. PYRIEIRNE (TEMPO) [RIA74E, BERRIE VA
()26 A REAR I M P AL — Z0OR 26 R B (AN, DA SR A E AR
00 | S e o O 1 T 7/ e | e o 7 N S R = N ) 1 DANG 1
W, DU EEIRAE N AR 1 SRR TR) o 1) i AR R RO BR R B A F
NWIKF, F CREE NSNS, AT Dl R mne S el 1,2- I A L
1,2- i (P 1.60) 181,

R R MTO/H,0, (aq) R R

HO OH CH3CN MgSO4 reflux o o)

& 1.60 MTO 4k 1,2-—FEA= % 1,2-—Fd
Fig. 1.60 MTO catalysis 1,2-diol formation 1,2-diketone
1.6.3 FEE =S AL B S B AL S AL S A
£ 2003 £F, Sharma %5 ANRIE | 3k =S ALBRIE DAL, NS
W, G M= REAT TR R B R E S (B 161 B,
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2R L R SRR FTE PR AH O P A EAE DM AR 7 B AT 2 B B A

R. _.R R-H.C. MTO/O Q R-HC.+_O
ITI 2 'TIH R—NH2 2 R\I{I,R \N/

R R , CH4CN reflux I|R+ ’ R

R-NO,

B 1.61 MTO fEALEE A R R
Fig. 1.61 MTO catalysis amine oxidizing reaction

H 2 = S BRAE LA &5 S S B R A R b ke s S ZE/E . 7E 2006
4, Soldaini 55 A\HIE 1 F 5 = E AL BRAEAL AL B BR- RO I5 AL 5 A=
ARSI RS (B 1.62) O, 2 7 FH RO 70, 1 Herh o 3
AR AR BT AL AT VAT, SR N S AR B A 1SR T
75 PR o IH RN EAAT BN A U o, BRI ELAAR
FEARE ST 3R, ABAZ RN T 1 BB ISR AL, JF i 0 R a4 2 1
.

H,NCONH,/H,O
RAN’R1 2 2/ 2‘ R&IJ\II’F%
MTO CH3;0H o

& 1.62 MTO 4Ll & WA AL = B
Fig. 1.62 MTO catalysis oksymy oxidizing reaction

1.6.4 H 3 =S AL PR S BiAL SV I AL

FAT T A5 5 Qblofobl ™ 5, b T2 Ry R A HE B, o
T ERAL SR AL B IR, RS AL SR AL AL TR R A B

B EMEETRZ —

1998 4 Brown =5 ARIE 1 FH 2k = A BRATF AL, i SR A e
TR Wy e HAT AV E A RO IR SAL &4, R 1% B B
%%?Wﬁ%%&ﬁ%ﬁ%(!l%)m”

O,
S R H202 S

R
U U L
B 1.63 MTO AL MR AL i T AR ERAR,
Fig. 1.63 MTO catalysis thiophenes produce sulfoxide or sulfphone
2000 4F Lahtit*®% A4 T 7E I AU ETFE T, 8 R — 57 3 A
FAA VAL EA BN SV SN, EBCH IR, SR JLF- A
BEAT, (B N ik = AL BRAE D AR S RO R W B 4R g, PR
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KiER, XEEREHT R = AR BN S8 T 8RR it 12
MTTHR R T STE A o Y = S A BRAE AR AL R PR e S 0 5 B — AL & 4 1) 48
e PR AR EERER, A B 2 A s B A Rt AR AR
Wals, SRJE AL BRI BRIR EE, I (]38 Ko A el

1.6.5 FH B =S BRI ALY AL & W A B R A &

H T ERR G RER N HEREZATIE, [FIN 2 & A S =
ZEkL, EANINAEFEPEEEEZNEN, FIEREZFaE KREMA S
FIEH T ER R A S ) £ SR

Adam % \7E 1994 4EH0HE T 76 F 2k = FABRE AL, AL EE R
SEACHIIIR 2 T A BB R S A R S IR (8] 1.64) D84,
FEAZSRAE T 35BS (1) A2 AR A7 B R A7 A A I [ 1 S By Oy R &40, 4
SR A IIN B = BR AR, S N ZR R 1 HL 7 B AR
FAR, AR 2 S L SR = 2R KA . 2007 4K, Berninil'®145 A
H— DI A ARE T 2 = S BR AL By 2R AL S AL R A A P RO
Horh e B R S B R H ) LFAE 98%LL F. By KAk &b il
FRAE I S P AT A B AT BRI E

o) o)
j@[ _ M0, MTO Rﬁw . R R’
j@: AcOH s = RJ¢:RZ
o)
164 BYSULA
Fig. 1.64 Phenols oxidation into quinones
1.6.6 F 3 =S {LBk{HELL Diels-Alder S
Diels-Alder (D-A) N J2fE 1928 F4E [E 1k 75X Diels 1 Alder &I —
KA EEARAIUL IR, S8 S A7 L0 I I ke 055 AN R
S WU A TS IR RS B RAR E ( S SE o FH T IR e S P s 6 41 v
REFGEFE 2, PRI RN 5| 7 KB i oo,
1997 4£ zhu A1 Espensont®"HfiE T F 3 = A AR TT LIV D-A S (118
RSB, 8 A S0 s AR A e s 24 23 XU Ak B I I e S s o 3
T SESG P 2 S AN AN FH 35k = S A B A 771 e e I 75 AR A I (1) 4 e o gk
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17, %ﬂDAf%1{*UH¢$1XTE%T&WiE$ (RIS B vy 1 BB 3R e S
SEARIEFRE . A SR I R I A LI AR EEAE 7K AR IR SN A 3 1
Wir= 2t iy, 1 Bo6 R BB ) 5 AT TR AR T A R BB I R
B S K B B T B e B SRVE IG5 R R = A Bl I H AT PR
TP R A T SS 4 E RS, IX 55 A4 A BRI T e e B T D SR A
Z A EfH, XFERERE T D-A RHIR A

1.6.7 H 3t = S AL Bk 1L Baeyer-Villiger AL < B

Baeyer-Villiger 444 5 B2 45 55 R B SLER 28 A4 A 1 Hh 4 NS5 1 AR i
FHRE R BN BE R BB RS, IR AR LG s 35 AR
. 7E Baeyer—ViIIiger SN SN H A R B AL AN 2 32 21 52 [R] I AN 2 521 -
PR R 7 B AL, A DURR A 5 B A T2 1 5 A 1 Fl R PR TR0 = 47)
AR, R X *)if”%ﬂif“/zﬁﬁf“fﬁﬁ‘ﬁ%iﬁkﬁ%ﬁ%%/\?H’JAﬁkqj
[168]

{E 2001 4F, Berninit™®V%5 A\ E BT ARG T AE B = AARBRIE R A,
AL AN NEAL ), W B A 28R R A A T R & e — R 3 S e
FAAE Y E Baeyer-Villiger 40 i A= 5 N BRI SN, BT A B SR IR SRS i
B TSI R, 2 )5, E 2003 4 Berninil 14 \ St — B TARE T —
LB o B R AT AR AE T R =B e i A ), S A E N AR N R A
Baeyer-Villiger %4t 5 B A= BRI P B IR OSE o R IAR — S8 B be BT A= 7
AR TIRE G, ARG 5L N i e S R AR OB IR R, R T RRAE A
PR E L FE IR A BEEAR TS, A AT T R A 7] R 3 = S Ak Bkadt 4T 1 13,

PR A R B ve il T X AR, P R AT REIL 3 80% LA .

2003 4 Berninit™™ /N ] i AR TR A B 1- T 3E-3- F SR ke Y
SR AR AE NV TR, R = SR A R e A A A SR Ak 22 B BRCLR B S B
Baeyer-Villiger 4t 5 A2 B N B8 1 s B, 7= 2 ARTE 90% LA L, 1y HIR5K J7
R PRV AR 52 7 7 2 o
1.6.8 Eﬁﬂz’?ﬂﬂéﬂ%{’ﬁé%%ﬁﬁ’ﬁﬁ)\fiﬁ

A FH R 2 = S A BR O AT SE DU Sl S N OB FF A2 . fE 2005 4,
Bianehini 55 A\ 3k = S A0 Bk DL R [l 3 W 2k = S A BROfEAL 77D, i RAE
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ANEAF, LE[BmIm]PFe B3R TSIl 1 — L8 R AR AT AR A Bl A
AR, Bl 1-2R 5 20 R AR AN S S 2B R R BRI, 1,2- 3R O
BBk EImA SN A R 1,2- A RSSO AR AR AR LR e, b4
e B g N 2B RS e M I S AR O 1 8 e Ak E FH [Emim] [ TN 51
PRVE VA= R H e (B 1.65) WA, oot B 66 = S AR Ak A ] 28k ) 3
=FAMBR L BOR IO Z A RIRK, TR SN FI AL & 3L, A
AL FIFI L, 22T B SR b, 1 HL BT RAA A B T LLE A

2R IR R
D 1
H . - OH
[Emim][Tf,N]

60 °C
Bl 1.65 =SB SRR HIBR-SAEN RS
Fig.1.65 MTO catalysis C-H insertion reactions of adamantine
I = A BRER T/ NI E A A, B I KR A2 — 2D T I 2
AR B BT LU Sy i R TR AR (1 S LS AT R R T A 7 v B
S O JEORMAT B LR HLVAR] 207 iR 9 RRE R 2R = SR A0 1R R, s R
PR, BERATRCR
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2 MTO ARG SR & VIR DU A S ST 7T
2.1 PRI

A R SCHR A AT A A SR BRI A S P IR A A A o-F R ) S
RS I 2 B SCHRAGE . AR A B — B AL SR e R
e XL . R E A R R IR a-FR B A STk HAT,
PITARIE IR XU A S B AR ™ AR AR FE PR, A X HLE AT I T .
NATIRE A IR 14 T ol e 2 B 2 (33 A2 IR (AL B L 57 J S A S B
IR S VAN Sl Y AN E TS S VAN =K 3 A b e PO TR
FRILAL SN IR RCE 2 OB FE o A1 SCILE S BLBR I b SN R, AT
SR (1) RUER A S SIRIE T, A B 3 T T B4 P B N 25 AP vt 2R 1) 56 PR A
IR FAL SR $RB5E 2 AL AR A 7], TEXS SRR BEAT BRI AR
SERAZ N IR SN LB, =25 AR R A 52 o

2.2 ZAHAE

TEWF AU =Bk (MTO) AL R B R B, AR SCHE 2
I R RS DOG R A la (B AR IRYIEAT OB &AL (Table
2.1, H%, M/ 10 mol%f) MTO fEuMELL T, 2 la Se4 N5 )E, il
X RSP IAERE AT, IR . LA 54%I1 73 B P~ 2 AR BT H AR =4 Bk
Fey-FR Rk TR E ALY 2a Centry 1, Table 2.1). 2 5 Zid £ B BIsLE,
S5 BRI AT 10 mol%H) MTO Z3 B AN S B Z R AR 77 28 4 B
A AL S FFAR I UM 5 mol%f¥ MTO, [ 24 /N 2 J5 BN 5 mol%
() MTO, 24 1a e MG, LL83%M 0 B R85 Hhxr=4) 2a (entry 2,
Table 2.1). #RMM0, 22l AT ER, A 1 + 1 mol%[) MTO
N, FF%E S E R B AP 2a (entry 3, Table 2.1), @i W8 & B A RE /&
HI T MTO fE s Bk R R 2L T 40 K, 4% 5+ 5 mol%F) MTO 435l i
TE NI & Bk, BT IR0 1% S50 Centries 4-8,
Table 2.1): SEE 45 R IZ I RAEXH RS A BeAEBCH b5 =4, il
T FMIEMEZE (entries 2 and 4, Table 2.1), JEREHIEEILEA RS RN
FEHARVEF IR RE KA [ M Centries 5-8, Table 2.1), REEMAT EMEA
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Z RS N T (HR 7 2 W TE R 38 i BR st b B, L
ANINBZ JE AR A, REBEATI D A TGE SRR, T2, &I
FRBAE A Z R IR AEE . BTk, Ml S MR i s iR 18 = 200
AR E, AU EI DL ERI B AR, 455K MTO KA E, K
A HEAT Centry 9, Table 2.1) . B WL, ZE iR 2% T = B ELRCERAE (1) 264
E, XERBIMA RSB EE, 49RRY, o1t s ik
S EAEARFEL RPN LER (entries 10-12, Table 2.1). T2, 18K
H 2 DNHER) H0, (30%) 1EIZ N AR AESRIE. Bk, RAHIE 1T1ZX
N IFRUESAE: Condition A (5 + 5 mol% of MTO, 2 equiv. of H,0, (30%),

CH2C|2 , o
xR 2.1 RMFAAL
Table 2.1 Optimization of the reaction conditions.?
n
pr" 5 + 5 mol% MTO }_{r
P(O)(Ph), H>0, (30%) HO P(O)(Ph),
Solvent, rt, 48 h
la 2a
Entry Solvent H,0, (equiv.) Isolated yield of 2a (%)
1° CH.Cl, 2 54°
2 CH,ClI, 2 83
3¢ CH,Cl, 2 0 (95)°
4 toluene 2 45 (27)°
5 CH4CN 2 0 (90)°
6 THF 2 0 (93)°
7 EtOH 2 0 (93)°

# The reaction was carried out using 1a (0.25 mmol), MTO (0.0125 + 0.0125 mmol), and

H,0, (30%) in solvent (850 L) at rt. > MTO (0.025 mmol) was added to the reaction mixture at

the beginning. ¢ Unidentified by-products were formed. * MTO (0.0025 + 0.0025 mmol) was

applied. ® Recovered yield of 1a.
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®21 RMFMRM® (%

Table 2.1 Optimization of the reaction conditions.?(continued table)
Pr" 0] Prt

5+ 5 mol% MTO />_<
P(O)(Ph), H20, (30%) HO P(O)(Ph),
Solvent, rt, 48 h
la 2a
Entry Solvent H,0, (equiv.) Isolated yield of 2a (%)

8 acetone 2 0 (86)°

of CH,Cl, 2 0 (75)¢

10 CH,CI, 1 68

11 CH,ClI, 3 76

12 CH,ClI, 8 67

# The reaction was carried out using 1a (0.25 mmol), MTO (0.0125 + 0.0125 mmol), and
H,0, (30%) in solvent (850 L) at rt. ¢ Recovered yield of 1a. " The reaction was carried out

under reflux conditions.

2.3 JERYIE G EWT T

TEWRE T BAER AT, AR SCOON HRYE & AT TR (Table
2.2), SEESE RR IR T MR ER R B AR, = HUARER Y HAR )
TR R AE LAY (entry 1-9, Table 2.2), %M ARAELL R IF R
TR, Rk B — AR R BB -y- R R ) 2.
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# 2.2 RS R °
Table 2.2 Substrate Scope of of Alkynes Derivatives ®

5+ 5 mol% MTO 1
R? R H,0, (30%) (2 equiv.) -
R3>:':<P(O)(Ph)2 CH,Cl,, 1t, 48 h R;Zijp(o)(':h)z
1 2
Entry 1 (R, R4 RY) 2 Isolated yield of 2 (%)
1 1b (H, H, H) 2b 78
2 1c (Me, H, H) 2c 78
3 la (Pr", H, H) 2a 83
4 1d (BU", H, H) 2d 77
5 le (H, Me, H) 2e 74
6 1f (H, BU", H) of 77
7 1g (H, -(CH2)«") 29 70
8 1h (Bu", Me, Me) 2h 74
9 1i (BU", -(CHp)s) i 75

# The reaction was carried out using 1 (0.25 mmol), MTO (0.0125 + 0.0125 mmol), and
H,0, (30%) (2 equiv.) in CH,CI, (850 L) at rt.

2.4 NLFRHF I

PR, AR MTO AL I — 2R R BRIE 3L BRI S8 A & ) B XU AL
SR HLERREIF 7 TC . ARHEAR S SCIRAGED™, A 6 MTO LIRSS
AP AL BRI T B IA S8 2 e T B 3o Bt i AT RESE 7K 7 1 A AT
XS HHA 3, SRR (SN 0. AR LE I
K2.1, ©FI MTO 5 Hy0, 73 T HRIE L B E AL B S XA B R & (0
J|227R 7 mpRe A1 dpRe), LM UE W FR AL G PE RIS uh i g A i
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TR —IH B Hi8 4555 )3 T mpRe Ccycle A) i1 dpRe (cycle B). 7E7H
WA RE T, AT AL 2T mpRe B dpRe fid S A% 3R B — 0%
HH R LT R BOOUEEE , RIS TR BRI Al e TR I VRS . fEIR MR,

TR BRI B R A AR R AR B, A E AR R A BRI X I

ML RENE . T R BRI BRI s T Re ), R EOR-TRBE T 1,2-1
BB T o5 ERT 23- M ENETZHE, B, et 1 2,3-16 &
B LTI BR-ROE IR RUAR B AR U I T2 S AT R G I X Ik %
PEo MbAh, BT ORI A AL BE S, SRR B RE R AR AT
P Mz B ORI AL B, AR P RS 3.

2 1
R R R2 R

H,0
RS | POPh, N0 H20;

3
OReO -/ Ro1 POEM:
O CHs

HiC o T
O- Re
O O
cycle B /\ RZ\

H3C R3 \
H3C O
\ N

O-Re O (Ph)2(O)P 4
2 NARNY
R% 00 HO cycle A
R3 \
Rl

(Ph),(O)P H,0
A CHg

) e} Rl H202 o= Re (@]

R Sy o
R? P(O)(Ph), M
3 P(0)(Ph),

2.1 MTO EALBRIFEI A RN
Fig. 2.1 Proposed mechanism of MTO-catalyzed epoxidation of allenes

ZGAR AR T A0 DUA T e 2 B R BRI SR S b R R AR 3 IR
AR 2 IR IR &R (K12.2) o 7E path A, BT RGEIR K )5
HAENED 3 PHIRR-E R, AL E T 4, BETRedt— P EZS
IR T GRS B RTA, SR E 48— BEAT AR s S HE A BUR ) 2,
TLVE 1) 2 iR FR BRI T S RLAAR 28 mP 7K 201 (RIS I A 5 e A
TRV IEAe, XA R 2w 2 SNE e . £ path B T,
Oy F IR Gy FRAZBE B LR B R SE T ) sp® BT, AR AL &4 3 H Y
Bi- SR IR 2T A 2 AT BT AR, B /8 AT AR bR B HE AR R 2
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Yo 2, n] UUE tH B4 2 IR R IR T S SR 28 R K 7K -1 1T HL e A2 P
B PR R R ORI . BEAZ B LB B n] e A 42 T — 283 i 2
R85 25 (NGP) i AE, e hirlal{k 5. 2 J5A MRl GEI TR igte,
Paill Py Gy i3 b ve N R 1% NE R RN DS R S S Bl L TEA S 2 Na o

TEEATAEYD, a8 AT POE AR R &) 2 (path C) W]
uﬁﬁﬁ%¢?ﬁL%§%%?E%$%mﬁL%%,W%MﬁL%ﬁW%
PRTF IR, AR DL A3 I FHER R DR EF . 55— Fhig
TR I T AFA%E UL TTH R R A B A AR S, BB - S T RT3 2B RS
TR, e B R A POE EHE R 2 2 (path D), FILLE
W R R R T SN AR R P K 1, T R IS A ) T A Y
TR o

€]
o R HO R! o R!
" RZ'\; , POEM, Rzﬁwoxph)z R272—< PO)(PH);
/® R R3 OH R% OH
/6\ 4 path A rac-2
H™H
1
( 1 HO - R
RZo R! R? R R2
N\ 3 — e P(O)(Ph),
Vi > R R3
I . )3 P(O)(PH); oH -
3 O path B
nor R po)Ph
R* “on ?
HO R chiral-2
R2
PO)Ph),
R3 OH

R2 — I?}Ph) path C
R o 2
1
path D path C HO . QAR
7 -— R >
HO 2 P(O)(Ph)z 2—<P(O)(Ph)2
e R?" oK

R

path D chiral-2

Bl 2.2 DU BE A R MIALE

Fig. 2.2 Four different possible reaction pathways

FROK, RIE M IMANG BHIESE S g Bt , B Hr PLE I DU Fre]

REMIMLEEIERE. B, WARZRMIAI RN Z L path A /e, B4, B

EET 4 H@ﬁzﬁi*fﬁlﬁ.i&%5ﬁtﬁiiﬁﬂﬁ¥%ﬁmit, XREAF R 28 /0 DA%
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AN A . R iZ R ML 43 path B C 8% D 142, A il 2
FEr= 5, - B, &5 path B 3% C 3 FE AR BB 277 i I 45 06 f 7 5 4233t path
D AR B B A M B A R I 2T LA BT, BRATER T
(R)-1e F(S)-1e X P FPIF- LRI, I HAEFRHE A N AT XUREAL B, S50
25 BLR B IRSEH SORL (Al T 1 T DR B B R R B oD T 2, ee
EREEMN TR (B 2.3, mH, @iksg X7 RNiE 7 (R)-2e
(Bl 2.4) H1(S)-2e (K 2.5) 4ax AL, [FINFseiegh Rt & B (S)-1e Zid XL
BIRA N T (R)-2e, (R)-1e £id WFEFEAL [ N A4E B T (S)-2e  (Scheme
2.3.3), XESLIGHE L], path A AR IFA R TEA VLN, Koy
P15 B R B ANETEA o B2 T =it 4 ¥ B0 R s 1) ee fE AT DAIE R RS
FERAL T path D &b #E, FARE path D W FE TS0 00T A B B
¥,

5+ 5 mol% MTO O

H202 (2 eqUiV.) ?—\
POFN: e, masn - Y, POE:
73%
(S)-1e, 97% ee (R)-2e, 94% ee
5+ 5 mol% MTO O
I\ H202 (2 eqUiV.) —2—\
POPN: ~Grcn i ash ., PO
75%
(R)-1e, 97% ee (S)-2e, 94% ee

23 PHRBIE

Fig. 2.3 Chirality transfer experiments
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2.4 (R)-2e HIH- 4514
Fig. 2.4 ORTEP representation of (R)-2e

& 2.5 (S)-2e B L5
Fig. 2.5 ORTEP representation of (S)-2e
AT B TR SN, ARRSCHHT T 0 ARidsish. AR
fF AR IR SR RPN 50 L 19 Ho'0, AT 4% T 10 Aid =4 24,
SRJE L LB (ESI-MS) BiAKAG I 28" *°0 FIEMIAL B, X2 AT 363
ST Al T AR, B R4 e (& path A, B 28 D b2, FRA =4
Pk R T ORI T RSLAR R AP IK 7, Bt el %0 brid, ik
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MR T EA A WRZL M path C 2, IAF=Prhizst FiE
JE PRI T 40 T N B IE S bR T, IR AR b U SR T A R K
AT EREIET, BB EREUR TR 0 baid. Ik, BAVER T 5
B (ESI-MS) B, SRiE— P sz = b 1 e LR FE, FRATIFERA
2B T AERRE = i 2a AT 180 ARIC S i 22 2 5 R R4 4 B T

IR — RS (ESI-MS) Sk B i, R 2a [M+H] E T
m/z = 317 AN FEE N 100% (& 2.6). SR 45 (ESI-MS?) KGR K
BAHf R [2a+H] (miz = 317) FER AT T F= A 17 B T 25 70453 5l
BT miz = 299, 219,203 F1201 (& 2.7), HRPE=LFF i (ESI-MS®) [
PRI T miz =299 CRE T miz =317) ARl F BT miz = 257 (& 2.8).
fE R BRI i (ESI-MS) (e, BF miz =257 CRE T miz =299)
ERSEE R BT miz =229 (2.9, BFULEMEER, =T AR Rg
A R B TR AR (] 2.10), 7E ESI-MS? iR, BFES F[2a+H]T (miz =
317D AR E T FHEBR— KT, ARTET miz=299, XK T5E
T miz =201 S5 AT RE T miz = 219, B ESI-MS® it IR T, e
BERSF miz = 299 fER &G FIE— W FIE ST, BEEAERTET miz =
257, {F ESI-MS* Yl e, HEMIRIIEES T miz = 257 fE A& T FRE—
DT BARERTE T miz = 229, XULEREH, WEIRCTH 2a 1
ESI-MS Z&E 77 AN AERR T i — B, B2 5t AT LUl I A i i 2k 2 17K 31 A
— BRI TR, SREE Y R SRR S 0 brid, kit
—BAUF R B LB I R
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a

Fiekrive it ki
oom Som HHBEWRE&EKERER A HE RS W

31713

o
]
HO PlO)(PH

Rz bie Ak

H &
0
H-P-Ph Hg O o
[=]
0P-Ph  Bh 0-P-Ph o “ha
1 H" |£|'| HQ FIDIIPR
Fh 20114 o/ pioyph
203,13 21912 ()P} 339.14
EE 29922 | 134,
17247 14051 15506 17395 18338 |.| IZED || zsm=a L i [ [ =341
10" T TedoT T Tese” T Tido” T Tzbo” T Tz "zd0 R R
ez

K 2.6 ¥ 2a ESI-MS Jti% &
Fig. 2.6 ESI-MS spectrum for 2a

219.07
miz =317 Hg (0]
[ ] 0-P—Ph
H
He Ph
“HJ
7 PoyPh)
H & 29917
b
H—IT'—Ph
Ph 203.07
]
0=P—Ph K P
I;‘h HO [OKFh,
20108
_ . EM.T o5 gy 317.06
11838 14031 PHIF gz | 3907 | 25767 | z74za I
T CHEF G 140’ 180’ 120 © zda’ ' ‘z@a | zéd | zed LT a 320 zda

& 2.7 BB m/z = 317 ESI-MS? Y i

Fig. 2.7 ESI-MS? spectrum for the precursor ion at m/z = 317
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Rl
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SE
S
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Fig. 2.8 ESI-MS? spectrum for the precursor ion at m/z = 299
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Fig. 2.9 ESI-MS* spectrum for the precursor ion at m/z = 257
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Fig. 2.12 ESI-MS? spectrum for the precursor ion at m/z = 319

46

i

'z



LT AL R AR A8 3

8

Rz bt ke

oowm B BB MWHEGBRARASEAE R SR

)
2 miz=319 I
4 @
x He
a
. O 203.06213 -
. i
[ 3
¥
!l
2e
El
- =
£ l"3:"
£ 3
. e
£ -
1
| = = == sge
:t I i.-.|.'::I1I::.'r.-:::|:uf|:':'.r1::t.-f.al:::r;t ¥ & 34 3E
H
b@
®
H-P—Ph 18P —Ph
Ph Ph
C,.H,,0P* CyaHyo " OP"
124z 12710
203.06203 203.05062
~ X

2.13 BT m/z = 319 B4 ESI-MS i &

Fig. 2.13 High resolution ESI-MS? spectrum for the precursor ion at m/z = 319
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Fig. 2.14 ESI-MS?® spectrum for the precursor ion at m/z = 299
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Fig. 2.15 ESI-MS* spectrum for the precursor ion at m/z = 257
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Fig. 2.16 ESI-MS?® spectrum for the precursor ion at m/z = 301
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FEAW PO HFhric. BT ERATHARMLER, BH T RS 287
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Fig. 2.19 ESI-MS? spectrum for the precursor ion at m/z = 321
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Fig. 2.21 ESI-MS* spectrum for the precursor ion at m/z = 259
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gikgat (8 2.23), SRR LLGHE T IEIH A LM (E 50, MRPETEH
KAVESE, WIS S T 57 miz = 303 /& 77 i 3t AR 3t B ) EUR TR
180 FRad, FI BB RERS T miz = 321 FEA/S E FRET 4T H0,
THET miz = 223 e o R N[PP0)(Ph)]*, TET miz = 205 N
[HP(lSOH)(Ph)zr, X ek L2 R AT Rt 20t T 4B S 5 path C 1A, (R

SEARIX AR T B NI R - e MBI path C i AR 5K =4 il i path D
L%%iﬁiﬁ@ﬁ%ﬁ@*@im*ﬁfiﬁ@, TEF MBI F, P ee ARG HICH AT
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3 SLI6 55
3.1 SE56 e )

'H NMRiiz FHAVANCE I11 400 (400 MHz)#Z B 3EHRACI 5, BC NMRit FH
AVANCE IIl 400 (L00MH2)#Z R HARACN &, *'P NMRi% FHAVANCE 111 400
(162 MHZ)ZREFLIROGN 2, #RFHCDCIfE#R;  IRJG I F Avatar 360 FT-IR
R ANy 6 FE T 2 s HRMS (ESI)1E A Bruker Daltonics micrOTOF 1174 i i
A 5E ;s ESI-MSi{# i Thermo Finnigan LCQ — ClassicZ fii{% %2 ; HRMS
(ESI-MS)itk i Thermo Finnigan LTQ FT-ICRA! F kAl & s 44 s R ks 2%
FHAAER A BR A A IWRS-2 AUE s G E s e 544 Ak ee B 18 FH e 38 VAR
ity (HPLC: Infinity. LC 1220) 43 (Chiralcel AD-H, n-Hexane : i-PrOH =
9:1,0.6 mL/min, 230 nm)M5E; ELJE AL FHP-10202 SAX R I E s AE Z AT s
F 2,18 2T A o Tk A2 S 2 1 BT AR 77 1Y), 3 AR e -H (200-300) /2 LLZR 0 6
W) A=

ESI-MSS2I6 I 5 4 22 #5151 Thermo Finnigan LCQIE & AR N k4T .
FEARESII 22 AR MRS E 43 1.3 torr; 551 EL7%%591.93%10 ° torr;
BEARREN69.1; HBhESIRENT; I1Spray HLE N4.25 KV; BUIEHIEAN
44.00 KV; B TAE4E L E 8200 °Cs iEHHEIEN20 V. EHRBFRISH, BEE
FARSLRE B %8 B Am/z 1.4, TEZUV/SUT Zilio brifEmli Ae &6 H 25%%35% .
Jti Mm/z = 55-6000 521-2F0 . 10 mgr™ it 2ai i# £1100 mL L5 . FEMSH I
FEARZAET, FESEATEO.55 mL/min (80%ZE+0.1%FH) . 7 H LR i
AN % S T IR B AT A 2 5 ) ESI- MS?, MS® RIMS i A

14 HRESI-MS S IGATF 71 FH /& Thermo Finnigan LTQ FT-ICRF1Dionex
Ultimate 300015 &% . €03 f 3 BEH A 1:10 (110 uL/ min) 5| AE & FIEF .
ESIHEAZAE: SR WML E 5% 41.06 torr, 55 EL7%%50.63x10 °torr, #HES
R N60, 4 Bh/ SR N10, 1Spray HLE A4.00 KV, 4% K ~48.00
V, BANEEEN275°C, BEHFEHEIEN60 V. £, FE 7R
T miz 1.0, RIGTERSR T &t brdERidE e & H 25%%35%. ik Mm/z
= 55-6004 £ 1-2%5 . 10 mgy™ b 2a¥% #2100 mL L5 o FEMSEL IS A& AF T,
BERIEATELL mL/min (80%ZJE+0.1% 2D . 78 BB Seib h, Ak
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TAEMOLI B TR P REHT A R &I BIESI-MST i
A E AT
(1) =ZKEMAE: EESRTE, EEEMEE R, REHE
(2) VYEPRMGALEE: fEalU TR T, EMVLRIAFAE R IER, A2 H
Bt AR R & .
FARARAF U A2 i AR, I KTORE R

3.2 JR R ] &
3.2.1 FE=SF 4R (MTO) %%
| 509G _(.7' B Sn(CHy);  CHs
AgReO, + Si(CHs)5Cl m’ O=Re=0 + AgCl O=Re=0
o)

B —~/>100mL Schlock i 75 /K 7o S0 Ab B = ¥k, ¥ &1 2 =i i A 1.00g
(2.8mmol) EBEERER, SRJEMA25 mLZ fiE¥ AgReOL A%, FhNA0.78 mL (9
mmol) =FEEGbAiE, FE50°CHR MRS N RS2/, Z JEEEGARY T
R, BRESEARDTE, WOy E G, R InA0.39 mL (2.8 mmoD)
PURR LSS, AT N IR AN N ARG RSEFE T, IINE & IE
OO0 °CF — Bl (B =49, S TR BIVKAE B R R h 4 dh, L IE Cbedk
ik, GRSl BT LATESO °CTN FHETR B U =Bk, KA N IR
e
3.3.2 Hexa-1,2-dienyl diphenyl phosphine oxide (1a) £

Et;N
n-Pr——=— c THF a
-Pr—=—  + Ph,PCI -
OH 2 -78 °C~rt P(0)(Ph)
65% 1a 2

FEESRY T 5 111250 mLF = FHf A A 979 mg (10.0 mmol) 2- hbk-1-F,
2.0 mL (14.4 mmol) = Z i M130 mLVY Sk . JRE-T8'C IR T, S22 N
2.7 mL (15.0 mmol) —ZRIE GBS . In5e )5 R N30 B AR IR, HARRIBI=
TG RS —AN/NSHE B RS 8, TR AR BRI, R (R 2R
2 = 1:1)4itk. B3 A M0EEla (1.826 9, 7%65%). 'H NMR (400 MHz,

CDCly) 5 7.76-7.70 (m, 4 H), 7.55-7.42 (m, 6 H), 4.70 (dt, J = 11.2, 3.6 Hz, 2 H),
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2.22-2.17 (m, 2 H), 1.61-1.49 (m, 2 H), 0.91 (t, J = 7.6 Hz, 3 H).
3.3.3 Propadienyl diphenyl phosphine oxide (1b) i 4%

EtN
= Ph,PCl e,
_—\ + 2 o >
OH 78 ot P(O)(Ph),
60% 1b

FEAF [ S256:3.3.2. 540 mg (10.0 mmol) 2-A#e-1-F#, 2.1 mL (15.1 mmol)=
L%, 2.7 mL (15.0 mmol) —ZRE FALBEFI30 mL DY Sk . 45 2 [ (& [l £ 1b
(1.422 g, *%60%) . *H NMR (400 MHz, CDCls) § 7.78-7.71 (m, 4 H), 7.56-7.43
(m, 6 H), 5.88-5.82 (m, 1 H), 4.89 (dd, J = 11.2, 6.8 Hz, 2 H).
3.3.4 Buta-2,3-dien-2-yl diphenyl phosphine oxide (1c) il

Et;N
— + Ph,PCI THF —-—a/
T\ 2 5 o
OH 78 Cort P(O)(Ph),
67% 1c

FEAEE)52563.3.2. 1.394 g (20.0 mmol) 2- T He-1-F%, 4.2 mL (30.2 mmol)=
¥, 5.4 mL (30.0 mmol) — 2R AL BEAI30 mLir) DU SRR . 15 2] 3 (b R 1c
(3.407 g, “267%) . *H NMR (400 MHz, CDCls) & 7.77-7.70 (m, 4 H), 7.56-7.42
(m, 6 H), 4.65 (dg, J = 8.0, 3.2 Hz, 2 H), 1.94 (dt, J = 12.0, 3.2 Hz, 3 H).
3.3.5 Hepta-1,2-dien-3-yl diphenyl phosphine oxide (1d) i #

Et;N
n-Bu—= Ph,PCI il &
- T\ + 2
OH -78 °C~rt
67% 1d P(O)(Ph),

EER5L563.3.2. 1.119 g (10.0 mmol) 2-P#kk-1-F%, 2.1mL (15.1 mmol)=
LM, 2.7 mL (15.0 mmol) R AL AI30 mLir) DU SR . 15 2158 (R 4 1d
(1.973 g, P #67%) . 'H NMR (400 MHz, CDCl3) § 7.77-7.70 (m, 4 H), 7.51-7.42
(m, 6 H), 4.70 (dt, J = 8.4, 2.4 Hz, 2 H), 2.24-2.19 (m, 2 H), 1.53-1.45 (m, 2 H),
1.36-1.28 (m, 2 H), 0.84 (t, J = 7.2 Hz, 3 H).
3.3.6 Buta-1,2-dienyl diphenyl phosphine oxide (1e) [fil#%

EtsN
_ THF
:( + Ph2PC| 5 > \—-—\
OH -78 °C~rt P(O)(Ph),
59% 1e

BEAF A 5256:3.3.2, 351 mg (5.0 mmol) 3- T e-2-F%, 1.3 mL (7.5 mmol)=2
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f%, 1.1 mL (7.6 mmol) K3 SAL AN 15 mL DY S WerR . 53 (9 [ 14 1e (3.002
g, 7%59%), H NMR (400 MHz, CDCl3) & 7.79-7.69 (m, 4 H), 7.55-7.42 (m, 6
H), 5.81-5.75 (m, 1 H), 5.28-5.19 (m, 1 H), 1.61-1.54 (m, 3 H).

3.3.7 (R)-Buta-1,2-dienyl diphenyl phosphine oxide ((R)-1e) i %%

Et;N
‘< THF 2
= + Ph,PCl - T
OH 78 °Crt P(O)(Ph),
63%
99% ee (R)-1e, 97% ee

PRV E)S256:3.3.2. 1.0 g (15.0 mmol) (R)-3- 1 %k-2-f%, 3.1 mL (22.5 mmol)
=, 3.5 mL (22.5 mmol) 2R AL BERA5 mLI USRI . 45 31 1 i A
(R)-1e (2.278 g, /" #63%). HPLCIl| {2+ : Chiralcel AD-H, n-Hexane : i-PrOH
=9:1,0.6 mL/min, 230 nm.

3.3.8 (S)-Buta-1,2-dienyl diphenyl phosphine oxide ((S)-1e) i %

EtsN
OH THF \
}< + Ph,PCI —
78 Ot P(O)(Ph),
63%
99% ee (S)-1e, 97% ee

EAEE)52563.3.2. 1.0 g (15.0 mmol) (S)-3- 1 %k-2-E%, 3.1 mL (22.5 mmol)
=M%, 3.6 mL (22.5 mmol) 2R IEFALBERA5 mLPUSWIR . 75 2 [l 44
(S)-1e (2.278 g, /" %63%). HPLCIiX 5% fF: Chiralcel AD-H, n-Hexane : i-PrOH
=9:1, 0.6 mL/min, 230 nm.

3.3.9 (Hepta-1,2-dien-1-yl)diphenylphosphine oxide (1))

) EtsN
Bu THF Bu
=+ PhpC
OH 2 -78 °C~rt

o P(O)(Ph),

1f

FEAE [ S256:3.3.2. 650 Pl (5.0 mmol) 6-Fikk-5-F%, 1.1 mL (7.9 mmol)=2
f, 1.4 mL (7.7 mmol) ~ RIS L BERI15 mLPUSE M. 5341 (1.076 g,
P2 2272%). *H NMR (400 MHz, CDCl3) § 7.79-7.71 (m, 4 H), 7.51-7.39 (m, 6 H),
5.83-5.78 (m, 1 H), 5.29-5.19 (m, 1 H), 1.95-1.84 (m, 2 H), 1.18-1.12 (m, 4 H), 0.80
(t, J = 6.8 Hz, 3 H) (3.1); *C NMR (100 MHz, CDCl3) & 211.1, 132.3 (d, Jpc =
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106.1 Hz), 132.2 (d, Jec = 106.1 Hz), 131.33 (d, Jpc = 1.4 Hz), 131.30 (d, Jpc = 1.4
Hz), 131.0, 130.9, 127.9 (d, Jec = 1.4 Hz), 127.8 (d, Jpc = 1.4 Hz), 92.4 (d, Jpc =
13.4 Hz), 84.8 (d, Jpc = 105.4 Hz), 30.4 (d, Jpc = 3.5 Hz), 26.4 (d, Jpc = 5.0 Hz),
21.5, 13.3 (3.2); 3'P NMR (162 MHz, CDCl3) & 31.0 (¥13.3); IR (neat) 1950,
1592, 1485, 1468, 1439 cm™*; HRMS (ESI) calcd for C15H2,0P (M + H*) 297.1403,
found 297.1407.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

V\V\I\I\I\V\V\I\I\l\l\r\l\r\V\I\V\I\V\V\l\tnmmmm\nlﬂmmmm FFFFFFFFFFFFFFF

TNETE N

Bu”,
P(O)(Ph),
905 J*7 96 o8 ~2.00 o8 199
ﬁ LA . I W |
10 8 ' ‘ & i ‘ ‘ ' ' ' PPM

B3.1 1f SRR &
Fig. 3.1 1f 'H NMR spectrum
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/211 122

30.470
30.435
26.479
26.429
21.475

13.205

Bu”
P(O)(Ph),
1f
1
| 1 1]
T 2o 150 100 0 ; " Pem
&3.2 1f Bri%miis &
Fig. 3.2 1f **C NMR spectrum
Bu”,
15 P(O)(Ph),

460 ‘ 3‘00 2‘00 1;)0 l‘) -1b0 2‘00 3‘00 PPM

3.3 1f Bk A
Fig. 3.3 1f *!P NMR spectrum
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3.3.10 3,3-Tetramethylenepropadienyl diphenyl phosphine oxide (1g) Hil4%

Et;N

_ ) THF
= + - =
PhoPCl oo

OH
61%

P(O)(Ph),
19

EEAF A S2563.3.2. 551 mg (5.0 mmol) 1- Z R IEFR R HLEE, 1.4 mL (7.5 mmol)
= W%, 1.1 mL (7.6 mmol) I EALBERLS mLPUSMEE . 433 3 4 1g
(896 mg, “2%61%) . "H NMR (400 MHz, CDCls) & 7.77-7.70 (m, 4 H), 7.54-7.41
(m, 6 H), 5.76-5.70 (M, 1 H), 2.41-2.32 (M, 2 H), 2.13-2.05 (m, 2 H), 1.60-1.52 (m,
2 H), 1.44-1.37 (m, 2 H).
3.3.11 2-Methylocta-2,3-dien-4-yl diphenyl phosphine oxide(1h) )i £

Et;N
Me THF Me\ /n-BU
n-Bu—Q: Me + PhyPCI o o S\
OH -78°C~rt g P(O)(Ph),
45% 1h

#1E[F]52563.3.2. 561 mg (4.0 mmol) 2-F 3E-3-2E4e-2-F%, 1.1 mL (6.0 mmol)
— %, 0.836 mL (6.0 mmol) 2R E AL B A1 15 mLPY ZM R . 453 27 44 1h (584
mg, 7°#45%). 'H NMR (400 MHz, CDCl) § 7.73-7.66 (m, 4 H), 7.51-7.42 (m,
6 H), 2.23-2.19 (m, 2 H), 1.47-1.33 (m, 8 H), 1.32-1.28 (m, 2H), 0.88-0.82 (m,
3H).
3.3.12 (1-Cyclopentylidenehex-1-en-2-yl)diphenylphosphine oxide (1i) )i %

EtsN
ﬁ THF Bu"
BUn — + Q::<
Ph,PCI 78 °C1t

OH P(O)(Ph
5506 (O)(Ph),

Li

EVEE52563.3.2. 831 mg (5.0 mmol) 1- bk FEIA B EE, 1.1 mL (7.9 mmol)
= W%, 1.7 mL (9.5 mmol) 2R AL BRI 15 mL DY SRR - 15 21411 (0.964g,
72 2255%). 'H NMR (400 MHz, CDCls) § 7.74-7.66 (m, 4 H), 7.50-7.39 (m, 6 H),
2.35-2.18 (M, 4 H), 1.95-1.84 (m, 2 H), 1.53-1.44 (m, 4 H), 1.35-1.26 (m, 4 H), 0.85
(t, J = 7.2 Hz, 3 H) (13.4); *C NMR (100 MHz, CDCl3) & 203.2 (d, Jpc = 7.1 Hz),
132.6 (d, Jpc = 102.6 Hz), 131.5 (d, Jpc = 9.1 Hz), 131.3 (d, Jpc = 2.8 Hz), 128.0 (d,
Jpc = 12.0 Hz), 106.7 (d, Jpc = 15.5 Hz), 98.6 (d, Jpc = 102.6 Hz), 30.6 (d, Jpc = 5.6
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Hz), 30.5 (d, Jpc = 5.6 Hz), 27.2 (d, Jpc = 7.8 Hz), 26.7, 25.6, 22.1, 21.1, 13.8 (K
3.5); P NMR (162 MHz, CDCls) 5 30.0 (/&13.6); IR (neat) 1945, 1464, 1433, 1378
cm™; HRMS (ESI) calcd for Co3H,s0P (M + HY) 351.1872, found 351.1878.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

i g

P(O)(Ph),
1i
_/087" AW o4 /Mi(as 14
1} s
10 s 6 R b pem

B3.4 1i Szt
Fig. 3.4 1i "H NMR spectrum
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28 2-R885EE B8 88 883 2N8288R2588
g8 3-8885a5 B8 88 §gd ghgiggrzass
gg 8855588 88 88 REE S8SRRRERNRS

3 YN N N

: Bu”

P(O)(Ph),
1i

3.5 1i i &
Fig. 3.5 1i ®C NMR spectrum

i
: Bu”
P(O)(Ph)
1i
3‘00 200 100 0 -100 2‘00 3’00 PP‘M

3.6 1i BEZELE
Fig. 3.6 1i *'P NMR spectrum

63



LT AL R AR A8 3

3.3 1B

3.3.1 3-(diphenylphosphoryl)-1-hydroxyhexan-2-one (2a) & %,

5+ 5 mol% MTO e} P

H,0, (30%) (2 equiv.)
P(O)(Ph)2  CH,Cl,, 1t, 48 h HO)_<P(O)(F’h)z

0
1a 83% 2a

Prm

R, A NI I 1a (70 mg, 0.25 mmol), FE=4%/LEk (MTO) (3
mg, 0.0125 mmol) , T %45 (30%) (50 pi, 0.5 mmol)F1850 il — & H ke fit 24
/NEF, Z JEEIIAMTO (3 mg, 0.0125 mmol) i £:24 /Nt , it 8 2 43 (TLC)
BN SRR K R 5E 8. S8 B e 28 230 ), AT REIROAE:
EMT GEF: A 1R 285=3/1-2/1-1/1— LR 4F8), 153 {42a (65 mg,
83%), ¥ 122-123°C (ZPBRZF/A Bt - 'H NMR (400 MHz, CDCl3) &
7.82-7.68 (m, 4 H), 7.62-7.47 (m, 6 H), 457 (brs, 1 H), 4.30-4.10 (m, 3 H),
2.17-2.04 (m, 1 H), 1.57-1.45 (m, 1 H), 1.35-1.12 (m, 2 H), 0.82 (t, J = 7.2 Hz, 3 H)
(83.7); 3C NMR (100 MHz, CDCls) § 207.9 (d, Jpc = 2.8 Hz), 132.61 (d, Jpc = 2.8
Hz), 132.58 (d, Jpc = 2.8 Hz), 131.6 (d, Jpc = 9.2 Hz), 131.1 (d, Jpc = 9.1 Hz), 130.5
(d, Jpc = 100.5 Hz), 128.92 (d, Jpc = 99.8 Hz), 128.89 (d, Jpc = 12.0 Hz), 128.6 (d,
Jec = 11.9 Hz), 69.9, 52.4 (d, Jpc = 54.9 Hz), 28.0 (d, Jpc = 2.1 Hz), 22.0 (d, Jpc =
12.6 Hz), 13.6 (/&13.8); *'P NMR (162 MHz, CDCl3) & 32.8 (/43.9); IR (neat) 3281,
1717, 1595, 1485, 1461, 1436 cm™, HRMS (ESI) calcd for CigH»03P (M + H*)
317.1301, found 317.1308.
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—32.840

T T T T T T U 7 T T
300 200 100 0 -100 -200 -300

3.9 2a BERALHE A
Fig. 3.9 2a *'P NMR spectrum
3.3.2 1-(Diphenylphosphoryl)-3-hydroxypropan-2-one (2b) f & ik

5+ 5 mol% MTO o)
—_\ H,0, (30%) (2 equiv.)
P(O)(Ph)2 HO P(0)(Ph),
CH,Cl,, 1t, 48 h
1b 78% 2b

BAERISLE3.3.1. MIEH InALlb (60 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0; (30%) (50 i, 0.5 mmol)F1850 pl — 5 F ke it #£48
NI 753 [E4K2b(54 mg, 78%), Kk 94-95°C (Z.FR 2.8/ R . 'H NMR
(400 MHz, CDCl3) & 7.78-7.71 (m, 4 H), 7.62-7.49 (m, 6 H), 4.85 (t, J = 6.8 Hz, 1
H), 4.23 (d, J = 6.8 Hz, 2 H), 3.83 (d, J = 14.8 Hz, 2 H) (%13.10); *C NMR (100
MHz, CDCl3) § 205.1 (d, Jpc = 5.6 Hz), 132.7 (d, Jpc = 3.5 Hz), 130.79 (d, Jpc = 9.8
Hz), 130.78 (d, Jpc = 104.0 Hz), 128.9 (d, Jpc = 11.9 Hz), 69.7, 44.0 (d, Jpc = 54.8
Hz) (1%13.11); *'P NMR (162 MHz, CDCls) § 29.5 (%13.12); IR (neat) 3378, 1703,
1601, 1583, 1493, 1443 cm™; HRMS (ESI) calcd for C15H150sP (M + H*) 275.0832,

found 275.0847.
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Fig. 3.11 2b *C NMR spectrum
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29.540

O]
HO)_\P(O)(Ph)Z

2b

T —T— =TT — — T —r—r——=—7 T
300 200 100 0 -100 -200 -300

E3.12 2b BEELRLE A
Fig. 3.12 2b *'P NMR spectrum

3.3.3 3-(Diphenylphosphoryl)-1-hydroxybutan-2-one (2¢) & i

5 + 5 mol% MTO 0
I( H,0, (30%) (2 equiv.) )—(
P(O)(Ph), HO P(O)(Ph),

CH,Cl,, rt, 48 h
1c 78% 2c

BAERISEE3.3.1. MIEH InALle (64 mg, 0.25 mmol), MTO (3 + 3 mg,

68

0.0125 + 0.0125 mmol), H,0; (30%) (50 i, 0.5 mmol)F1850 pl — 5 F ke it #£48
NI . 733 [l 44520(57 mg, 78%), #455: 99-100°C (LR ZFe/A s . 'H NMR
(400 MHz, CDCls) & 7.82-7.67 (m, 4 H), 7.62-7.47 (m, 6 H), 4.33-4.17 (m, 3 H),
1.32 (dd, J = 16.4, 7.2 Hz, 3 H) (/¥3.13); 3C NMR (100 MHz, CDCl3) & 208.4 (d,
Jrc = 1.4 Hz), 132.72 (d, Jpc = 2.1 Hz), 132.70 (d, Jpc = 2.1 Hz), 131.8 (d, Jpc = 9.1
Hz), 131.3 (d, Jpc = 9.8 Hz), 131.2 (d, Jpc = 106.1 Hz), 129.1 (d, Jpc = 105.4 Hz),
128.9 (d, Jpc = 11.9 Hz), 128.7 (d, Jpc = 11.9 Hz), 69.3, 46.1 (d, Jpc = 55.5 Hz),
10.8 (d, Jpc = 2.8 Hz) (&I3.14); *'P NMR (162 MHz, CDCls) & 34.8 (&I3.15)
(Figure 3.3.9); IR (neat) 3297, 1706, 1588, 1480, 1465, 1435 cm™; HRMS (ESI)
calcd for C1gH1g03P (M + H™) 289.0988, found 289.0989.
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Fig. 3.14 2¢ *C NMR spectrum

69



LT AL R AR A8 3

—_— 34776

B
HO P(O)(Ph),

2c

T T T T T T L T T T
300 200 100 0 -100 -200 -300

13.15 2c BEI%REHE
Fig. 3.15 2¢ *'P NMR spectrum

3.3.4 3-(Diphenylphosphoryl)-1-hydroxyheptan-2-one (2d) 4 i
5 + 5 mol% MTO o Bu

H,0, (30%) (2 equiv.)
= HO/>_<P(O)(Ph)2

PO)(PN)2  cH,Cl,, 1t, 48 h
1d 7% 2d

Bu"

BEEASLE63.3.1. MNIF InALd (74 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0; (30%) (50 i, 0.5 mmol)F1850 pl — 5 F ke it #£48
NI . 733 [Fl44:2d (64 mg, 77%), ¥4 5 : 129-130°C (2R ZFe/AER) . 'H NMR
(400 MHz, CDCl3) & 7.81-7.68 (m, 4 H), 7.62-7.49 (m, 6 H), 4.30-4.05 (m, 3 H),
2.14-2.08 (m, 1 H), 1.62-1.47 (m, 1 H), 1.26-1.12 (m, 4 H), 0.78 (t, J = 6.8 Hz, 3 H)
(%13.16); *C NMR (100 MHz, CDCl3) & 207.9 (d, Jpc = 2.1 Hz), 132.64 (d, Jpc =
2.8 Hz), 132.61 (d, Jpc = 2.8 Hz), 131.6 (d, Jpc = 9.1 Hz), 131.1 (d, Jpc = 9.8 Hz),
130.5 (d, Jpc = 100.5 Hz), 129.0 (d, Jpc = 99.8 Hz), 128.9 (d, Jpc = 12.6 Hz), 128.7
(d, Jpc = 11.9 Hz), 69.9, 52.7 (d, Jpc = 54.2 Hz), 31.0 (d, Jpc = 12.0 Hz), 25.8, 22.1,
13.6 (%13.17); *'P NMR (162 MHz, CDCl3) & 32.2 (/%13.18); IR (neat) 3293, 1711,
1595, 1488, 1467, 1440 cm™; HRMS (ESI) calcd for C19Hp403P (M + H*) 331.1458,
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found 331.1469,
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Fig. 3.16 2d ‘*H NMR spectrum

23 BRERIERE38 S8R8% 2828 88 8288 8
55 g8dnrnRnERANEER  REEB %‘s 5848 e
N W= NN Sy

(0] Bu”
HO‘>_<P(O)(Ph)2

2d
| - . | | ‘ .
) 2})0 = J : J 1‘50 1‘00 d } : éO ’ ' g

E3.17 2d BRAZREHE
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32163

(0] Bu”
HO)_<P(O)(Ph)2
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T T T 3 T T T T T T T T
SbO 200 100 0 -100 -200 -300

E13.18 2d AL A
Fig. 3.18 2d *'P NMR spectrum
3.3.5 1-(Diphenylphosphoryl)-3-hydroxybutan-2-one (2€) 14 %
o)

5+ 5 mol% MTO
— H,0, (30%) (2 equiv.)
PO)(P), POXPR),
CH,Cl,, rt, 48 h OH
74%
le 2e

A A 526:3.3.1. MM NALe (64 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0; (30%) (50 piL, 0.5 mmol)F1850 pl — 5 FF ke 13t +£-48
NI £33 [E 14 2e(54 mg, 74%), 15 5: 107-108°C ( Z.F2 Z.F&/ 41 k) - 'H NMR
(400 MHz, CDCl3) & 7.79-7.69 (m, 4 H), 7.61-7.48 (m, 6 H), 5.68 (brs, 1 H),
4.22-4.15 (m, 1 H), 4.05 (dd, J = 16.0, 12.4 Hz, 1 H), 3.73 (dd, J = 13.2, 12.0 Hz, 1
H), 1.33 (d, J = 7.2 Hz, 3 H) (%13.19); *C NMR (100 MHz, CDCls) 5 208.2 (d, Jpc
= 5.6 Hz), 132.71 (d, Jpc = 1.4 Hz), 132.69 (d, Jpc = 1.4 Hz), 131.3 (d, Jpc = 102.6
Hz), 131.0 (d, Jpc = 9.9 Hz), 130.8 (d, Jpc = 9.8 Hz), 130.7 (d, Jpc = 104.0 Hz),
129.0 (d, Jpc = 2.8 Hz), 128.9 (d, Jpc = 2.9 Hz), 74.2, 43.3 (d, Jpc = 54.8 Hz), 19.1
(%3.20); *'P NMR (162 MHz, CDCls) & 30.8 (/&13.21); IR (neat) 3294, 1711, 1585,
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1480, 1438, cm™; HRMS (ESI) calcd for CiHi0sP (M + H') 289.0988, found
289.0988.
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Fig. 3.19 2e "H NMR spectrum
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VWD1 A, nm (DADAT HILXO(-1134.D)

mAl ] B
w] QO g
: 4 g
80-
g P(O)(Ph),
40-
o OH
s 2e
26 25 3‘0 3’5 40 4'5 50 55
¥HER # B LT LT nE HEET B@me % Area%
LC-3rf% [WHF-HIL-XX-1134.D ol [[1] 3837 | 66766 | 1171 | o0.862 | o0.821 50.497 | 37.727 |
T 4E51% |D:\DATAWHF\ZA\ 7] [[2 | 52508 | 65452 | 85.3 | 12207 | 0803 | 49.503 | 36.985 |
B8 [22-Oct-14, 14:11:27

&3.21 2e BRI EIATHPLCE
Fig. 3.21 2e *'P NMR spectrum and HPLC spectrum
3.3.6 (R)-1-(diphenylphosphoryl)-3-hydroxybutan-2-one ((R)-2e) ] & %

5+ 5 mol% MTO 0
H,0, (30%) (2 equiv.) >—\
P(O)(Ph
PO)(Ph)2 ~ ch,cl,, 1t, 48 h oH (©)Ph;
(S)-1e, 97% ee 73% (R)-2e, 93% ee

EAF [H) 52 56:3.3.1. MR N (S)-1e (64 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 plL, 0.5 mmol)A850 il — 5% FF ke i £+
48/ . 43 3] [ 4K (R)-2e (53 mg, 73%), 93%[feeft it HPLCH &, 2%1F
(Chiralcel AD-H, n-Hexane :i-PrOH=9:1, 0.6 mL/min, 230 nm, T=307C), t;
= 37.5 (major), 52.3 (minor); [a]*% = 22.4 (c = 1.00, CH,Cl,) (&13.22). (R)-2ef#
R E s CiH1703P, MW = 288.26, Monoclinic, space group P 21, Mo Ka, final R
indices [I > 2sigma(l)], R1 = 0.0747, wR2 = 0.2087, a = 5.8589(19) A, b = 17.826(5)
A, c=14.463(5) A, a=90° B =93.258(5) %,y =90, V = 1508.1(8) A%, T = 223 (2)
K, Z = 4, reflections collected / unique: 9387 / 5122 [R(int) = 0.0427], parameters

365, absolute structure parameter 0.07(7) . 1 HoAth Bt S5 S AR %04 % , CCDC:
1040646
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’3.22 (R)-2e EAZHEEEFHPLCHE
Fig. 3.22 (R)-2e 'H NMR spectrum and HPLC spectrum
3.3.7 (S)-1-(diphenylphosphoryl)-3-hydroxybutan-2-one ((S)-2e) il £

8 5+ 5 mol% MTO Q
— H,0, (30%) (2 equiv.)
P(O)(Ph) P(O)(Ph),
2 CH,Cly, 1t, 48 h oH
(R)-1e, 97% ee 5%

(S)-2e, 93% ee

FEAF [F) 5256:3.3.1. )N H NN (R)-1e (64 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 pL, 0.5 mmol)$n85o L S e i
48/~ . 15 3 [H 14 (S)-2e (55 mg, 75%), 93%/[K]eefiiil it HPLCH &, 21

(Chiralcel AD-H, n-Hexane : i-PrOH =9 : 1, 0.6 mL/min, 230 nm, T = 30°C), tr =
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36.8 (minor), 50.5 (major); [a]20D = -23.7 (c = 1.00, CH2CI2) ([%13.23). (S)-2e i 4
B CieH170sP, MW = 288.26, Monoclinic, space group P 21, Mo Ka, final R
indices [I > 2sigma(l)], R1 = 0.0962, wR2 = 0.2391, a = 5.826(4) A, b = 17.749(10)
A, ¢ =14.404(9) A, 0. =90 °, B =93.154(9) °, y =90 °, V = 1487.1(15) A® T =
213(2) K, Z = 4, reflections collected / unique: 10019 / 5774 [R(int) = 0.0721],
parameters 368, absolute structure parameter - 0.07(12). &4 HoAth K 35 S5 i 14 %
#isfE, CCDC: 1040645,
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&13.23 (S)-2e ExmLERMHPLCHE
Fig. 3.23 (S)-2e *H NMR spectrum and HPLC spectrum
3.3.8 1-(Diphenylphosphoryl)-3-hydroxyheptan-2-one (2f) fit il %
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BU" 5+ 5 mol% MTO (0]
\ H,0, (30%) (2 equiv.) jj
BU" P(O)(Ph
P(O)(Ph),  CH,Cl,, rt, 48 h OH ()P
1f 7% of

EAERISLE3.3.1. MNIRH IIALE (74 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 pL, 0.5 mmol)F1850 pl & F b1 $£48
NI . £33 [El 4 2F(64 mg, 77%), . 92-93°C (LR ZWE/AmEE) - 'H NMR
(400 MHz, CDCl3) & 7.79-7.69 (m, 4 H), 7.61-7.48 (m, 6 H), 5.54 (brs, 1 H),
4.10-4.02 (m, 2 H), 3.68 (dd, J = 13.2, 12.0 Hz, 1 H), 1.76-1.55 (m, 2 H), 1.45-1.24
(m, 4 H), 0.87 (t, J = 7.6 Hz, 3 H) (/X13.24); *C NMR (100 MHz, CDCls)  208.1 (d,
Jec = 6.3 Hz), 132.61 (d, Jpc = 1.4 Hz), 132.60 (d, Jpc = 1.4 Hz), 131.3 (d, Jpc =
106.1 Hz), 131.0 (d, Jpc = 9.8 Hz), 130.73 (d, Jpc = 9.8 Hz), 130.66 (d, Jpc = 104.0
Hz), 128.9 (d, Jpc = 3.5 Hz), 128.8 (d, Jpc = 3.6 Hz), 78.0, 43.6, (d, Jpc = 54.1 Hz),
33.1, 27.3, 22.4, 13.9 (/&3.25); *'P NMR (162 MHz, CDCls) & 31.0 (&13.26); IR
(neat) 3281, 1708, 1588, 1483, 1459, 1435 cm™; HRMS (ESI) calcd for C19H2403P
(M + H*) 331.1458, found 331.1458.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
—————————————————————————————————————————————————

(0]
Bu”*?jP(O)(Ph)z
OH
2f
/oy% 685 200 o9 A for
|| ¥ N B

El3.24 2f SRR
Fig. 3.24 2f "H NMR spectrum
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OH
2f
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A | ® % g
&13.25 2f BrAxmLE A
Fig. 3.25 2f *C NMR spectrum
8
o)
Bu”Ag\_\P(O)(Ph)Z
OH
2f
300 200 1|00 EJ 100 4 d -2‘00 y ; ' ' ,3'00 ‘PPh‘A

B3.26 2f BEIZRLHE A
Fig. 3.26 2f *'P NMR spectrum
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3.3.9 2-(Diphenylphosphoryl)-1-(1-hydroxycyclopentyl)ethanone (2g) 1 £
5+ 5 mol% MTO o)

E>:,; H,0, (30%) (2 equiv.)
5 P(O)(Ph),
OH

©)Ph)2 ch,cl,, 1t, 48 h
70%

1g 2g

BEEASLE63.3.1. MNFInALlg (74 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 pi_, 0.5 mmol) 1850 pl 5 F Jre it 48
/NI . 433 [ 4429(58 mg, 70%), ¥4 fi: 129-130°C (2.1 2.8/ A ) . 'H NMR
(400 MHz, CDCls) & 7.77-7.70 (m, 4 H), 7.62-7.47 (m, 6 H), 5.71 (s, 1 H), 3.98 (d,
J=14.8 Hz, 2 H), 1.92-1.78 (m, 6 H), 1.73-1.65 (m, 2 H) (/&3.27); 3C NMR (100
MHz, CDCl3) 6 210.9 (d, Jpc = 6.4 Hz), 132.5 (d, Jpc = 2.8 Hz), 131.1 (d, Jpc =
103.3 Hz), 130.8 (d, Jpc = 10.6 Hz), 128.8 (d, Jpc = 12.7 Hz), 88.3, 44.1 (d, Jpc =
54.1 Hz), 39.9, 24.9 (/%13.28); *'P NMR (162 MHz, CDCls) & 31.4 (&3.29); IR
(neat) 3304, 1722, 1590, 1480, 1438, cm™; HRMS (ESI) calcd for C1gH5,05P (M +
H*) 329.1301, found 329.1309.
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Fig. 3.27 29 'H NMR spectrum
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Fig. 3.28 2g *C NMR spectrum
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Fig. 3.29 2g *'P NMR spectrum
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3.3.10 4-(Diphenylphosphoryl)-2-hydroxy-2-methyloctan-3-one (2h) )& &
o 5+ 5 mol% MTO QA
U .
: \ H,0, (30%) (2 equiv.) P(O)(Ph),
P(O)(Ph), CHCly, rt, 48 h OH

0
1h 4% 2h

EAERISEES (L. MR IIALh (81 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 pi_, 0.5 mmol) 1850 pl 5 F Jre it 48
NI . 15 3 142h(67 mg, 74%), ¥ A 99-100°C (LR ZEe/ A B « *H NMR
(400 MHz, CDCls) & 7.81-7.73 (m, 2 H), 7.65-7.42 (m, 8 H), 6.03 (s, 1 H),
4.95-4.85 (m, 1 H), 1.94-1.83 (m, 1 H), 1.48-1.35 (m, 4 H), 1.25-1.05 (m, 7 H), 0.79
(t, J = 6.8 Hz, 3 H) (%13.30); *C NMR (100 MHz, CDCl3) 5 212.4 (d, Jpc = 5.0 Hz),
132.7 (d, Jpc = 2.8 Hz), 132.6 (d, Jpc = 2.1 Hz), 132.5 (d, Jpc = 9.8 Hz), 131.2 (d,
Jec = 9.1 Hz), 130.8 (d, Jpc = 100.5 Hz), 129.0 (d, Jpc = 12.6 Hz), 128.4 (d, Jpc =
12.0 Hz), 127.9 (d, Jpc = 100.5 Hz), 77.6, 49.0 (d, Jpc = 54.1 Hz), 31.0 (d, Jpc =
13.4 Hz), 26.5, 26.1 (d, Jpc = 14.0 Hz), 22.2, 13.6 (/43.31); *'P NMR (162 MHz,
CDCls) & 32.3 (/&13.32); IR (neat) 3318, 1708, 1593, 1559, 1462, 1435 cm™; HRMS
(ESI) calcd for Cp1H,03P (M + H') 359.1771, found 359.1779.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
fffffffffffffffffffffffffffffffffffffffffffff

TSNS L\

&13.30 2h SRR
Fig. 3.30 2h 'H NMR spectrum
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Fig. 3.31 2h **C NMR spectrum
8
(0] Bu”
>2_<P(O)(Ph)2
OH
2h

K 3.32 2h BEAZRGRE &
Fig. 3.32 2h *'P NMR spectrum
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3.3.11 2-(Diphenylphosphoryl)-1-(1-hydroxycyclopentyl)hexan-1-one (2i) )] %

5 + 5 mol% MTO o Bu"

n
Bu H,0, (30%) (2 equiv.)
P(O)(Ph),
P(O)(Ph), CH,Cly, tt, 48 h oH
4 75% N

EAEFISLE3.3.1. MNIEH ML (88 mg, 0.25 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H,0, (30%) (50 pi_, 0.5 mmol)F1850 L — 5 F ke fii $£48
NI . 753 [ 4K2i(72 mg, 75%), 1 5 : 137-138°C ( 1R L8/ iR . *H NMR
(400 MHz, CDCls) & 7.81-7.73 (m, 2 H), 7.67-7.45 (m, 8 H), 5.88 (s, 1 H),
4.91-4.80 (m, 1 H), 2.19-2.12 (m, 1 H), 2.01-1.65 (m, 8 H), 1.43-1.34 (m, 1 H),
1.22-1.05 (m, 4 H), 0.78 (t, J = 7.2 Hz, 3 H) (%13.33); *C NMR (100 MHz, CDCl5)
8 213.0 (d, Jpc = 4.9 Hz), 132.66 (d, Jpc = 2.9 Hz), 132.60 (d, Jpc = 2.8 Hz), 132.4
(d, Jpc = 9.2 Hz), 131.3 (d, Jpc = 9.8 Hz), 131.0 (d, Jpc = 99.8 Hz), 128.9 (d, Jpc =
11.9 Hz), 128.4 (d, Jpc = 11.9 Hz), 128.1 (d, Jpc = 100.5 Hz), 88.6, 50.6 (d, Jpc =
53.5 Hz), 39.7 (d, Jpc = 7.1 Hz), 31.1 (d, Jpc = 13.3 Hz), 26.3 (d, Jpc = 1.4 Hz), 25.0
(d, Jpc = 11.3 Hz), 22.1, 13.7 (&13.34); 3P NMR (162 MHz, CDCls) & 37.8 (K&
3.35); IR (neat) 3281, 1717, 1595, 1485, 1461, 1435 cm™; HRMS (ESI) calcd for
CasH3003P (M + H*) 385.1927, found 385.1933.
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37.778

(@) Bu”

O_?_<P(O)(Ph)2
OH

2i

T T T T T U T — T T T T T
300 200 100 0 -100 -200 -300 PPM

13.35 2i BEIZRLHE A
Fig. 3.35 2i **P NMR spectrum
3.3.12 *0-labeled 3-(diphenylphosphoryl)-1-hydroxyhexan-2-one (2a*) (¥ il %

5+ 5 mol% MTO
H,0, (30%) (2 equiv.) o pyn

H,*0:H,0, = 1:1 )_<
HO P(O)(Ph),

P(O)(Ph),  CH,CI,, rt, 48 h

0,
I 66% -

Prm

BRI S2563.3.1. KONV N A la (72 mg, 0.26 mmol), MTO (3 + 3 mg,
0.0125 + 0.0125 mmol), H;0, (30%) (50 pi_, 0.5 mmol), H,™0 (50 plL)H1850 pi
AT BE R RE48/NN . 15 2 [l 422> (52 mg, 66%).
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4 52

JSEa

AR E=E AR (MTOD JuflEALH, L 30%id S8 b S /KU A
), JT I T R B M AR 2R A S I XU A OB o 38R 2038 e N2 P 71
T2 IFIE] S AL RN A AR I N & Sk O SAEEx e kAT 1Ak . £E
SRR B, R SEYIET TR . i PRSI . %0 AR SLh AN
ESI-MS AR} 20 Aric AR IS = M FOUE T T SSHLEE . S0 45 R

(1) MTO/H,0, AL IR R IR I B 6 A . (5 + 5 mol% of MTO, 2
equiv. of H,0, (30%), CH,Cly, rt),

(2) MTO/M,0, AR RT3, b 2 88 1 .y X SBR B 5
S A FEVE O FR AL IR B, BT R E M, AT SE I B IOAR K A
(Propadienyl diphenyl phosphine oxide) . XU HUA k4% (Hexa-1,2-dienyl diphenyl
phosphine  oxide, Buta-2,3-dien-2-yl diphenyl phosphine oxide,
Hepta-1,2-dien-3-yl  diphenyl phosphine oxide, Buta-1,2-dienyl diphenyl
phosphine oxide, (hepta-1,2-dien-1-yl)diphenylphosphine oxide). =B
( 3,3-Tetramethylenepropadienyl diphenyl phosphine oxide ) . P4 B A Bk /%
( 2-Methylocta-2,3-dien-4-yl diphenyl phosphine oxide,
(1-Cyclopentylidenehex-1-en-2-yl)diphenylphosphine oxide) A [F2E 7 )
BN . AR R E T —Fh R WA RO TT 15K & i p-PirAk-p-F2 52—
RER AT,

(3) W FHEREB S, 0 brid SR ESI-MS BiAX 0 frid
AEHEPRIC VAT SRR 1 I SIALEE o 5 S8 IR DU rh & H 1 AR - B DU BEAR v
MR A AL, AR KA T RS 5 R i e R A, BE S
R R K TR IR T R A SRIZ I BOTH, & BB .

ARIRSCH AL MTO 1R ELLTR, I E A (30%) 1R AL, #EK
Iy A SR A TR SEILIA AL A I X AL S N o IR0 M A ) R e LA
HRE, T AR A R R A B8
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