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Lewis acid-catalyzed intramolecular alkyne functionalization
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Abstract

Alkynes are important organic synthons, derivations can be done based on alkynes
to get ketones, alkyls, furans, and azoles, which are all specialized and multifunctional
organic compounds. As organic chemists endeavoring to unearth the chemical
properties of alkyne groups, more and more types of reactions based on alkynes have
been discovered. In this paper, the intramolecular hydrogarylation and C-O arylation
catalyzed by Lewis acid have been studied. The mechanism of R-alkyne bond cleavage
under Lewis acid and the effect of subsequent electrophiles on product categories have
been systematically studied.

Firstly, the catalytical hydrogarylation of intramolecular alkynes in the presence of
aluminum trichloride was studied. With 5 mol% of anhydrous aluminum trichloride as
the catalyst, phenylacetylene substituted biphenyls as the substrates and
dichloromethane as the solvent, the intramolecular hydrogarylation. Mechanism study
indicated the reaction might via a Wheland intermediate pathway, which is an alkyne
aluminum intermediate. Owing to the strong Lewis acidity of aluminum trichloride, the
hydroarylation reaction can be carried out even at room temperature with excellent
yields and good functional group tolerance. Compared to the ruthenium triflate
catalyzed hydroarylation reported previously by our research group, the substrate scope
of the reaction has been greatly improved.

Secondly, the intramolecular Friedel-Crafts hydroarylation catalyzed by iron Lewis
acid was studied. In this reaction, Fe(OTf)s was used as Lewis acid, phenylacetylene
substituted biphenyl derivatives as raw materials, and nitromethane as solvent.
Compared with the hydroarylation catalyzed by aluminium trichloride, Fe(OTf)3
features easy operation and preservation, owing to this characteristics, the above-
mentioned hydroarylaton reaction can be carried out with only 3 mol% of catalyst
loading. Although the tolerance of electron-withdrawing substrates was not good by
using Fe(OTf); as Lewis acid, the yields of the reaction were still excellent for
substrates with electron-donating groups. Considering that Fe(OTf); is easy to operate,
relatively stable under air condition and has high catalytic efficiency, this
hydroarylation can be used as an important supplementary method for the synthesis of
phenanthrene derivatives.

Subsequently, on the basis of previous work, we developed an intramolecular

photocyclization of alkynes catalyzed by Cu(OTf).. Under visible light irradiation, o-
I
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methylphenylacetylene ketones undergo Norrish II photochemistry reaction, and then
rearranged to form diethylene intermediates, which can undergo the intramolecular
cyclization pathway in the presence of Cu(OTf), to form 1-naphthol derivatives. This
reaction provides a good method for the synthesis of phenyl ring in excellent yields

with nice functional group tolerance.

Key words: Lewis acid, hydroarylation, phenanthrene, multi-ring compounds
Classification Code: 062
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EtO,C—==
EtO,C
CO,Et

@ [Au(PEL,)CI] (1 mol%) a
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5 AwAg AR R, 1208 SR B AR, DAV st e E 2 i
HETE G PEE, S5 S aY ERBARAAE, P RREEE &
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i, Bl RS GRENR BG4RGB RS B kE T ik, BE)E
EJEHER, DRI B OBk, dRSEEAEIS, 19 2L IR b g — b
SR RIS TS A= . (B 1-25) TEiZR M, REIMETT B i
e 5 1 A W] LIS I SR ARG B BEAT A28 o (B RO, OB RE REAE R
A e BEAT E 57 S SO, B AT AR B AN 2 0 I 07 SR AL SO, R
@ttt

A
-Ph

N
|
5 mol% [Py,TiCl,NPh
+  PhNNPh o [Py, TiCl2NPh]; é/LtBu
A PhCF,, 115 °C, 16 h

By

Ph

l B ! . _Ph
Ph, ! v N ‘Bu reductive HN
NTN B-elimination v elimination g,
LnTiV —_— E <\ j

K 1-25 BRAL SV B S 07 B A S b

iy

[FIFEHL SR B Kawakami 7E 2000 41 TAE, &5 00 8% 5 g ZrCly A% IE B B8
TR HEMN . R RETE Kawakami B TAEH, PLZIE NG, ZrCly LIS 3 )
FERAMG, BERERE, EMAEA R rELT . (E 1-26)

_ zrCl,
Ph———H +
85°C, 96 h, 1 mol%

K 1-26 ZrCla AL HI PR ST FE 4k S i

SRR BRI 5 R HE(OTH)s AL A E 07 B R & i 53R 384T

13
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AW, 2007 4F, Choong Buil*®! PRI IRIE T HAEM N . Z < BAEH 10 mol%
AT, HAEE AT, RPOGSEREMHR . RSHLEIENE % 2 BT A1
RNALEE, B HEOT)s B Se AR RCAL, [N HAz B 225 15 B 7 Hp (A, AR R
A5 25 TR B - P AR R 32 RIS R IR 2, & D 25 PR S AR A5 2107 i
HA AT, HEN N —AMEWIEIR . BT RS A BTk, s 1% I L
FERUE, B AT B E AT BN, AR B A IS P T L AN 325
(K 127

0__0 0__0
S 10 mol% HF(OTf), L
R'— > R
= | | o N
. R

[obmim][SbF¢], methylcyclohexane
85°C,9h

K 1-27 HE(OT)4 AL B IE S 55 FE A I B

7

5 TR & BAE Y, B, F8 R Wt A I8 et bR IS 05 FE A0 ) M
FEAAR) R BNANA R B 2004 A2 A44L, X B 2 10He.

SNEIES, RS EAAE YN WA HIE R PR S 07 FE R B . 51
&R EY) W(CO)s(THF)TEFI S H T2 26 W 7T R B Re B (it b 05 4L,
SN IS 4 JE W LA R A REAT , M IFARE P o SRR A&, Mk e b 1Ak
AT

5 LRI e AR Ak S W AE Bl i R AT BR IR IR I P B T, Be B ke Ak o
TR HE RS A B . 2017 4, Ackermann®VHF 58 /NH R BI, A FH — 46N
INEER], 60 FEIREE T BT, MnBr(CO)s 7EAG BT R HOAc HIthEh T REwE
R ity B 2R I DK M P &8 05 4k ) B« MinBr(CO)s 72 [ N R 28 77 1 S8 AR I sl Al ik
JRVEBR IS AR o MEnE b BB BCA,, b eI ER B, BERD ARV 10 =5, AE Rk
A FEA A4S, SRR R R BEAT % FRLGE TS, TR oM R A v TR A i 0 3 77 P R 40
THIERTE RS T A aE, TR E H AR A Y, X ik AR 1 1% S )
PRI S £ (18] 1-28)

0
X (0] 0
2-Py 0//< MnBr(CO)s (10 mol%) H //<o
N HOAC (20 mol%) \__ 7
/) T Me 0

1,4-dioxane, 60 °C N
// 2-Py
7
o N
N M
= Mnpy==~"
--H-~g
o)
o/&o

K 1-28 MnBr(CO)s {4 e S 05 FaAk [ BV

14
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2006 4, Takai "R KR T8 BBk & R B SR bR 707 A DA
TF MR — BrBRAT IR A (e S B BEATIE AL, RO A BRA, BB JE 07 Ak
Pk N Bt =B 2 18] OB SE BRAIR , T2 IR AR 2R BRI RS R AT 2%
B, frJe FEREE TR B T A . (B 1-29)

o o)
H
- [ReBr(CO)s(THF)], 2.5 mol% Vi H /]
Y DCE, 115°C, 24 h \ * VS

7\ Bu 4 Me—=—CO,Me o) | MeO,C \

H,0
o 2 Meozc MeOZC

H

via mN,tBu E:Z = 99:1 E:Z = 99:1

0~ ~Re"

H

K 1-29 BRI R I &Y PR E 07 264 S

BRAE AL B A 55 AL B B B B R 1B R B T Chien-Hong Cheng“0i i 2 7F
Organic Chemistry Frontiers | )77 [A] 24 - BKPE ) o EIETT R R o 12N
FINLHEAN Takai $72 tH AOHLER s BEARALL, JRMIAISS B+ M L. 2RV SEIL T 20
T B R X AR DKL IA R T B OB (B 1-30)

JTQ> B
H - /N

1 f
)
W L -
4 )N\ ReBr(CO)s (2.5 mol%) | | ReBr(CO)s (2.5 mol%)
N SN NaOAc (10 mol%) NaOAc (10 mol%)
v Toluene, 120 °C Toluene, 120 °C
4-12 h 4-12 h

K 1-30 ReBr(CO)s AL I S 75 FeAb [ M.

©/\ 10 mol% FeCly® 6H,0 “
A" ""DCE, rt, or 40 °C
Ar

K 1-31 BRII/K SV bR 28 07 Btk S

FNE S BRIRAEREAE T B EAEZRH. 2008 4F, Jean-marc
Campagne* R BZH K% T R 7K A WAL 735 P R B i & 05 J 40 IR
N A 9 5 BAR R R N — B Ay e B AR R B o 122 S N i W P~ 5 1] 5 2
PEAR 22, S T 3E 1 25 AAVERHF o Jeam-Marc Campagne 7% 45 B iE SZE6 A1
o T =B S 7 A ON, HHLIE — T & A2 T B Bk b 1A, i

15
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JE X AT SR RN . 1% RS TEREIESF Baldwin B, P2 SRS SO AR
(K 1-31)

EMER—F T T iz B i 408, R A 05 B ) B A
T EERN . BT IRB, H— I ET A A AT A T B R B A
Wb EAA, TR 48 T L P R . A AT AL I B S T B A SN
i n g @A AR AT, R ST TP AT . 1995 4, shinji Murail*iR
RRHFRIE T Ru(H)2(CO)(PPha)s VRSB B 7 RS0 . RN
FEFFR PSR IEAT . Murai i BRIE N EREER], EUAR DA EE T, b
A AR T Ru(H)2(CO)(PPhs)s IIVEH T #adfk, K4 C-H BE . RV FE R
UF. (B1-32) Beah, B+ = H R AR RO IO B, 12505 4 s 3 R i L
A+ E g X IR B

O

SiMe3
M
D) sy,
Ru H2(CO)(PPh3)3

>

+
/  Toluene, 135°C, 3 h
——Sij—
\

K] 1-32 Ru(H)2(CO)(PPhs)s i b IRk S 05 B A0 e o

2018 4F, Reddy ™7t /N KE T Ml [Ru(p-cymene)Cla]y AL 5 [7]
[RIB R T 75 PR B A0 HA [ B . AEZ TAEH, Reddy I8 i 15U N A A
AIAIR], B 15 2007 A0 d oA 2 58 B fe B I 05 A0 i o FEZ OB
R LR AEE e ER, UL B FIVER, AERETTECAL G, &7 REfE
TEACR IR LU, B2 T ok R AR S () T R DA R G 15 B B 4
P o LU IR R AN, AT RARE I S RIS B R, AT 4 ) BT Ak
T2, 18307 FAb = A B A T = 5. (B 1-33)

CO,Me
N. /COQMG U
R j ” [Ru(p-cymene)Cl,], Z [Ru(p-cymene)Cla], X NHNHCOZMe
U ) . R .
Ra Cu(OAc).H,0 Rs NaOAc, TFE Rs
Ro 1,4-dioxane . / R,
2

K 1-33 [Ru(p-cymene)Clo ] AL B IE S 05 JE 40 ) B

55\ BB =0 6 )8 #h AT DU AL R I &E005 R 4K . 2016 4F Shigeki
Matsunaga*Z#% K % 18 B 1 1A RO 57 SR A 07 Bl S OB, 4328 T K AL
BEAE AL A o OB B S R X, P, S e #8112 N, A

16
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B ERZAM g

PREE WA T M B AL R T, A=A el e AL, hri S SRR, BN e
BER, =AM RE P A BN SRR . EEACKIPLE AT AL LR A
FAL. BEAZI o BREEG =M BhiE e, BBk =i A 2] C-Co 28], & FXK
28 P S BR AL AL IR AR A B 7 A e (B 1-34)

X X H
R R4
nH 1 Cp*Co'" M
N N —

N Ry

Me,N~ O Ry Me,N
K 1-34 =Sl it Pl & 05 HaAk I B

I AR AL R bR S 07 B A S S A T AR S8 /2 =48 - Sundararajul 142
fERIERIA Y BEA, AR BRIEAE 9 97 B 17 o Sundararaju 3% 70 & 16
SEEEDAIE ] ST AT RS B S5 A, IR T TN 5 SN AL ER R HETN
RIS D) T RREBEEG, e, IEEE BRI, (& 1-35) EREE
M, A IAEZRT, FADRRIAME N BHARZEAT B 07 AL 1 S B AE BEAT e diiE it
(K1 X AT eSS KO AL R I E N BHAMEZR M 5, i VB 0 AL R K S 2

R Cp*Co(CO)l, 5 mol%
AgSbFg 10 mol% DG R
| NaOPiv 20 mol% N

Ho o
©/ + TFE, 60 °C, 16 h m
R

= X~
Z /N~Co~Cp*
N+ N

/ %’h

Ph

X-ray

K 1-35 = Hr Bl AL Bt e 2 5 A e b

BTN — JE A 4 A TV e A AT S SE I I TR R A
FHECAH &SRB, DRI R R ont B M 2 M IR R R 2801, R1 T B P e 7 12 B
9. 2001 4, Jung-Bu Kangl o 58 /N A# H RhCI(PPhs)s AMBBERF, =ZKIERE
PPhs ARCAAR, AL T 20T (AL AL e B R IR 2 (A 05 A R B o Bl T4
FEEPE BT 3, IR SIATLER 23 AR ABL . FR AR A7 Bt e 62 21 e o L e, H
TRVEERCAL, LI HEATIRI R N2> F 2 R EE 25, A R T B s is 4k, A2k
HIBREE B B2 2 ORI N, 32 N ORGP IR BRI AR 27 e (B 1-36)

17
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Me & |
Sy 10 mol % RhCI(PPhs); Me = |
10 mol% PPhy Sy
+ Toluene, 140 °C, 20 h
~ "Me
Me——Me Me

K 1-36 RhCI(PPhs)s {40 B IR & 05 24k s B

il

Al — R S — A BA AR T Z N R 5K SR e Jm AL &2 s A 118
RS N2 ARG B S 82 v BT T T bR R S 7 A B S AR AT S B R o
£ 1999 £, Nomura™IFiARkI& 170 18] FR AN 7 34 2 18] (2 07 HA S o (I
1-37) BT R R AR R S ML RE,  RIVEEAN 75 L 5m I i 3k 11 D i ik
A1, S B REBEAT ) SN 3R R o SN M LER A BE (AL (K 07 AL LR — 2

OH

n-Pr
0.5 mol% [IrCl(cod)],» X _ N-Pr
1.5 mol% PtBus OH
5 mol% N32C03
¥ toluene, reflux, 2 h OO
n-Pr—=——n-Pr

1-37 ARUEAL IR 07 F Ak S

2018 4, Fernando Lopez* & HFRN kK T —M4K[Ir(cod)2]BATF 4L K43
TRV ST BN, s A3 FH P9k M oy o o ik AR ik AR A e S B A o E— € 1Y
KEEJOI N, BB A & BB o 2 SN T 55 38 DL S AR S 1 5 B AR A
REF a2, (18 1-38)

CONE [Ir(cod),]BAF (5 mol%)] CONEt;
rac-BINAP (5 mol%) %/\
H .
dioxane, reflux —
— hydrocarbonation R

——R

K 1-38 [Ir(cod).]BArF AL BS54k I v

iy

BRSO IR S SR I 4 )8, AU BELE Heck fB X, Sonogashira Bk &
FEERAER, ER RS0 A SN WA 50T 2 KR . 2006 4F,
Hiyamal il 7 5 I8 H Ni(cod)s 15 7 A AT A 1R 3 TA] e o) 55 B4 44
RN TT AN, 12 BRI FL P ) B R B S A5 o HoAth A1
QORI 2R BRI, 2R FEIEMy , RG] 4,5- — I ERIE Mt e 2 5 31 ) W 2
FERFBCAR PCyps HIEH T, Ni(cod), REXI A FFBRPR ISR C-H f# ATk, BE)S
TN B GRA =B 7], B — O8RS AR R A 07 He = e (B 1-39)

18
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toluene, 35 °C

MeN" N\, R
10 mol% Ni(cod), R
10 mol% PCyps @_(pr
N/

P 1-39 Ni(cod) AL BB S T5 340 [ B

HE N —F 2 &G, BEH TR N .. Bk,
A0 B AR (R 05 S A R ATL BN = i 0 3R B 2 U TR A A PR R e S 0 A S B AR AL
H EAEHERKIAR. FujiwaralVNHTE 2001 SFHGE T BERRALMAL 1 2T RIS
JiEAL N o FE 2.5 mol%la FR AL AL AE FH R, 28 Lk SRR AN 5 3 R AR S 05 5%
I o SN B R FE e . Fujiwara A S Sidetn N i Ak AT, &2, 7
TFA %5, BElRE K A B AAAS#e, A PA(O2CCFs), H T TFA 1EARCAAZE 5
SR P N € 1 s U DG B2 v = = ) VA ) g =K i A T
d SUIE SRS, KAEGANRN, 75 msm A\ B et A pud L
4. &G4 RGNS AR ™, R AR, #HTES. Al
Fujiwara tH3EH 7 5 —Fh R MEEAE . B TIEFIEH TFA B ksaretE, [
TFA FCAL AR R A FT RE IR B R AR SR AL RS, A 0 4 1E 15 1 ]
P, B IR B A D AON SRR AT O R L, AR R SR A R A, 2 RIS
FEFEFRA BN —FE, AT RIEA T REA R =5, R FEAEELR . (K
1-40) X — b RN F TR T A28 1) B8 2 SR AL R b S0 A R — B

Ar-H Ph
. Pd(OAc), 2.5 mol%
Ph—==—CO,Et TFA, CH,Cl,, rt Ar CO,Et
Ar-H
Pd(OAc), [Pd(O,CCF3)]" — > Ar-PdO,CCF5
- H+
TFAl Z
R:Z%
Pd(O,CCF3)
Pd(O,CCF3) R——R
|
R Ar-PdO,CCF,
\@H
R PdOZCCng///

Ar R'

B 1-40 BARRPEAE AL AR 28 7 S AL S b
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2016 4F, Akhilesh K. Vermal®2/NH W GE T KA R G T 71 N IR
NI AT FA [ L o 12 RN A IR I R ot fEE IR, RONVARAR
L T R AR, BT ORN SMHEAT R e B AL, Bk =B N B DT Bk
B 6], TSGR AR, A RIEASR . (B 1-41)

e
N X Pd(OAc), (2.5 mol%) N R,
seol— wisse
— ~
N 65°C, 24 h N O

B 1-41 BEBRPEAE AL AR 2 7 B Al S b

B A [ TC 3R B 22 A T AR AR I S o BAMEAL 10 R 07 BAE 3CmT A2
TR I DT AL AT DU A R AL I 0T B AL . TEIR AR M R I E DT S AL IE
VUSR5 54, AT RN HL RS E Heck ISR AINLER . ¥ 552 PtCL A1
BIEBCAL, R IE 2 PIE AR SR A R R AR B e 2004 £F, SamesP R A ik
8 7 PCL LI T N ETT HAL B, T AR M. (& 1-42)

O~ "Me CHyCI,, 70°C, 24 h O~ "Me

89% ee 89% ee

B 1-42 BAMEAL IR BRE R 7 2l S B

ALK VA £ PeCls FH T2 05 2418 SakamotolP/NHAE 2006 F K 3K
IR FE TAE o %R BA 2,6- 80T 2-4- FH IR RE A8, BN, Sl 7 mibk
IS BACIATED S IR M OB . (B 1-43) &N EA H AR E R
BN, A gL SR TR AT . ROV BN EIREIZRALL, PtCls
AR AR DA T A7 AE

R4
Pz PtCl,, EtOH, 50 °C, 1h R
Ro 7 o EOTL S0 A
j\/ 2,6-di-tert-butyl-4- R3/Z/_N‘\)\R1
methylpridine H
50 °C or reflux

& 1-43 BAEAL KB R 07 H Al S N

A TR DT AL R AR S DU i A AL R RE LB R — B0
FUrstner® gl 8 7 M AL I 20 T BT SRR IR 05 A S L o S F) 445
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SR Baldwin FLIECL, SRS ) SR ™ A2 /S TCHE, X2 T 6-endo-dig Bt
VU REM o s b A W R 7 S R I A, S A B AR R L TT A i, X2
TR 18 T 5-exo-dig M 8. (&l 1-44)

OMe
X ‘
MeO O 5 mol% PtCl, OMe
O toluene, 80 °C

OMe
CO,Me
= CO,Me
O 5 mol% PtCl, | Me
O Me toluene, 80 °C' O.D
Me
Me

& 1-44 AL I bR 07 B S B

2018 4F, JANICTTRE/INA R PICLAE M), BAMBE R TS
W2 a2 05 P HA A AL A = B b 2 AasE M. (1] 1-45) {E15
—RME, SENZHMEEMRIRAERRPIINE 6-endo-dig 1 5-exo-dig JKA), 1X
Kz K IRIEAE Baldwin FELI

PtCl,

& 1-45 HAMEAL I B R 7 B4l S N
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1.1.2.3 BHBRR TR AT RIRIES T B4

SEUR TG AR A R 1Y) 4 J R WL RE B AL b S 55 B A s L o 28 1T el st
AL ah, SALHE, AR DR bR s HAL AT, DRI 6 B AR X BLGE
Ko MERAZEE, HRMRIN 17— MeREYE, IINOs). I[(Cl04)3+2H0 b
SR Lk, AU R IEREYE . RN, LOe fE iR EL, BT R
EIEH, 2 02+3 A+S i, WAL T BUTRKE)E M. 2004 4, LarockMIT
FONHARGE 1B B A AL K51 A PR T SR OB . T ICT R
P, OB EAEGIR FEEAT. (18 1-46)

<8 -
- O
O ICI 6
O . DCM, -78 °C O Q Ry

R1 = H, CHO, NOZ 56-100%
R, = H, OMe, Me, CO,Et, NO,

1-46 IC1 AL bR 25 240 S B

2014 4, Barrett®HF 7o/ N WARIE 1 SALHUEAL 71 WIS 40 SO . 1%
RN LB OIR ORI E IR, AR T — RPIESRIIATAEY) . RN R R (&
1-47)

>< o) o><o
0O o0 o /@ NN
X
Wo Z | \ ICI, KsPO,
Me,N PrvgCl N DCM, -78 °C

1-47 FACTAE AL I bRk 07 BEAL B B

oy

2004 4, Kozmin!®Vk i€ 1 —Fhfili ] = s RS IR iz 16 ot IR IEAL 1 731~ N
AT EA L BRIEZ AN, =R BERRAR M RE AL N, A O I

22
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NN

JE IR AT B 2 IR = G FRRE R R 1 R 1AL SR AN = PR R R e » S o 7] RS i
JS s B 1E B TR HEAT Rk B 1 S T b TR S P T AR A s A B
Ak, (K 1-48)

HN(OTH); (10 mol%) O‘
It DCM, it

OTIPS
OTIPS
nPr nPr
AgNTTf, (10 mol%) ‘
Il DCM, rt
OTIPS
OTIPS
D 9@
_ H H
TO° NTh ) OTIPS
TIPS NTf,

B 1-48 =350 FP e R B AR AL (V) pu ke S 07 Ak S

2015 4, Jae Nyoung Kim!®'J & | fff R (B AL 1) 70+ N BB B 0% 2k
L o A BRI AE 9 o7 5 IS A bRb Jo 1A A U 2R IR B 7, B S X 7 SR EAT
PRI, R A AR IR A o 558 R I gk e I AR IR A 72, e 7™ R B AR,
SN R dE VARG . (1 1-49)

Ph. _N
Ph\ N A\ Ph O
N—-N N
Ph—\ H2S04 1.2 eq. Ph Ph—N Ph
Ph .~ =

CH,Cl,, rt, 15 h
\\ Ph

Ph

K] 1-49 BRBR AL AR e S 07 A B b
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1.1.2.4 SATREMIITRIRBESTTHL

2016 4F, IAVNAEKE T E IR TR =5 P R B AL R 7 7 R
T RN (] 1-50) L TTER R S5 R LA e I8 <62 Ja 1) i 2 IR YO A
PR 7 B B S AR T80 2R 70 3% 1) 6 2 B IR 3 AR AT 1 T FEAS fiE A ok
KR T HAC SN o WRIE R SIS, FRATIER M 1 I S ML, — 5%
BRI SONLER, 3Ah— BRSO LB . IR AT SR, T A
B RIHLERAR Iy =2, =50 R IR Bl O HEAL T AN 2 — A — BOBLEE, T2
TR S AT 5 S B 22 T o K RO = R R R HR LA, REE RN
Rtk REMEALMRERONL, R & T HHRE 8 2 Wi iRk, RENE IR AL 8 5 S

It

3 —\ R2
REN >R

_/ N\ 7

\\ 5 mol% Nd(OTf)3

CH3NO,, 115 °C
1a R

Nd(OTf
2a (OTf);
protonlysis

P 1-50 = g FF e P el A ) R e 07 A e
BMEZ, B, SEER, 578K R TR AT AL Bk 7
A B K 731 T8) A S 07 2 S A TR I (1 e i B 1) ) B B 0 ) 32 1) 07 34 4
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Ro RERIEANTT 3 BIEREE KA RE N HETNIE, X8RI
WIRAERATH , ML R AR 10 A7 A S B o T TR I 5 H IR ML 1) 7 2
BB AT B A e R AL ), R IRiERIE, @dralqT, ScitEsm
Frm, IR BB Z A HLE A E R EA, BT R 18 &R o0
BRI T R R A A bR R 0T A B B DL R AT T 0 B R e A B 1 A
JERTCER RSB IR AT AT (1R 70 3% i 5 J IR PR A ) S 05 A S B o IR A g B AT
BRI 5 A S 5 HAL I [R] IN BE % 1 BGAE RIATZE M, X O BATTRIBIE FER In 1 b,
B A K 2 A R L

1.2 JfesyrF NI R LR FUBE R

A & AR R = AR A LA S T i AR N B RE T2 —, I AL
AR S5 BT I, SR FbR i — B ) S B — B LR EGZ A
BB TERI A TIRN.Z — o R PUERI 2 RN AR 2R R, A6 Ik
Pz, AL SRS AT ER B S B, ST R IR A e N — ELER S AT LA S S B 1
—MRE NG, PR ST BT Z 1 T UL RN T, )
AR ST iy H At R DS ARG A 0T ST (& 1-51)

Enamine
Ynoates ‘

N\

Carbocycles \ / Enynes
R

—— > Acrylic Derivatives

Diketones

Vinyl Compounds =<—— lh

\ Heterocycles

Ketones

Alkynes
D|ynes

Ynones Imines

1-51 Btk &2 5 s O

A AT B B =B B Ak S AT DL I I < e R AL e T I ML I
IS FH ) S5 ER B o B DA AR e SR T BSG, I ELAE I 2 I 7 mp R AL 77 FH 2D
AT AL B AR R s SRR A, TR i 7

2003 4, Victor Mamane PRAZHMRIE T — P2 HH A InCls 4L T HIHUE
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AL SR A AE B 10- s ARIERT AR R OB, fE %G T i, M &R AL
BRge 7 A AL SN 5 B 10- 5 ARFEAT AR 40 T LAAE D <08 FH 2k it S5 Bl Wb AT
7,77 - XU A0 R B S A R A D R ) N AR E OB R R R . (& 1-52)

R R R R
O x  InClg(5mol%) O X
O 4 toluene, 80 °C O

OMe OMe o)
MeO s MeO | OMe
e . _bc _ Meo N
eo MeO o)
Br MeO

MeO NR2

MeO Br

e e

MeO MeO
e s

[a] I, HgO, CH,Cl,, r.t., 81%; [b] Pd(OAc), cat., P(o-tol); cat., N-vinylphthalimide, PrNEt,, MeCN, 100
°C, 57%; [c] [I(COD)Py(PCys)]PFg cat., H, (1 atm), CH,Cl,, quant.; [d] 2-formylbenzeneboronic acid,
Pd(OAc), cat., Cy,P(o-biphenyl) cat., K3POy, toluene, 94%; [e] CBr,4, PPh3, CH,Cl,, 0 °C, 88%; [f] DBU,
DMSO, 15 °C, 79%; [g] InCl; (1 eq.), toluene, 80 °C, 87%; [h] hydrazine, MeOH, reflux, quant.; [i] Cul,
CsOAc, DMSO, 71%.

1-52 InCls fiEAL T HIBR AR L 2 F L

[F]4F, Antonio M. Echavarren PR@IZIH#RIE | PtCL LY 5- (2-FRMHE) -1-4k
[R5 F NI RON . R & BOTE, % R BRI ZERE B, RIL—Fhk
P E-EH IR =G Y N AR — N R B e R AR . B2 OV R
H, IR REA BRI T R A, ARG 550 R IR BE l— AN AR
B =M o M A KAFAE R 254 N T, RIS R 7 ZRENEY), 31
B, ZPA -0 R A ) T AR S T REAAAE ) . (1] 1-53)
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1 R!
| Y | o)
7 Z
S R? Cly(L)P L/
277N t
R byLol, Pt(L)Cl, 2
R2
L = H,0, acetone \
4 ya R1 Z
(o) Pt
OH (L)Cl

K 1-53 PtCL ALY 5- (2-BKIEG) -1-%RFr) 71 AL e

2004 4, Takahiko Akiyama BRERZHHRIE T —Fl W(CO)s(THF) fifk T sz
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(F1-55)
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AR 3- (1-J5 MG Adbds. (8 1-57)
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I N T

2.1 REEHATR

WEIRTSCRT A B —FE, T WA EWEE R EAERBE, K2 R
o7, BB ZNA, 5T W HRIEE TS FEA0 N = 3E XA — R 2
RIRTW), FEBRZS, BB GeRMTIERA B @M. £ G METT R N
iz, BEEMIERANESBRZHRLESE, flng, R, W, %, 4%
S SR IR Pl 4 AL I 05 A0 S A — AN BB, TS il B S ) ik 3t
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R FR R P B L2V A ) bR 27 I I T R R B R, S B R N L4 BF R I
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A ReSEI . FRATVENTE 0 T0 3R 1 2 R BE IR BRI B B R D), X sL ik 5 iy
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1 BE AT, FRATEEE AT REE =R N R BT REHAT R R TR OFH
B, B, RO R L RE IS AL E T FE A R S, SRTIARN TSR, Fikoo
T T AT AT AT A o S5 F UL LM, RIL—BEHIGR
6 5 TR P A (R R 2 PR 05 A S T gl LA AR 1 R R T 5

mRMEPEER S, BRARNNEEITE. 53, fln=&M08E, ik
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FER 5 R e B J5 S M 4 AR BROE B8 1, AR BRI IE B8 2 R A DY, DR i (s 754
SERESAL I VS EZ PR (& 2-1D).
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~Br
AICl,
- = + +
AICI
cr =3,
© t T o 5 ' 5

70% 30%

O

O
AICI
SRPSENg e
K] 2-1 {8 og Bk 3 Ab e v

= EAEE OB A T ot Bk, ST AL OB, AR AL PRI R A
R L . BRI e A BEFR B A & B [a14A, an, e i E oy &4k
Ji RERETE A BT BT B 1 [R) B 3 I — AN D5 & 38, 16 F & R o5 & e — A
W U5 o BRAR AN BRI ) S5O RS A ORI RT AR, T 2 BT AE M B
A, B0 T LR AE S RO AR P - 5 5 SR AL BRI 1) 53— A B RE AL
WEREREALR), NRE R B E s . XX FREL N S o EE (K 2-2),

AICI; (10 mol%) i SiMeaSiMes

HSiMe;SiMe; + R—=—R, —(cr{0oc =
’ H R2

B 2-2 BRI E e HAL R R

AUVE Y, =S R I B RERIAL R — NSRS e, R
JBi. FEHT N A RIEEA L, FATHIE ZSACERIEy—A> ok 5 g, M
ZRELEHEAL T AR I S 07 Ak S 8B B B . AR/ N 22 e, kAl
I 7 B9 Bk, P =90 B IR BN EAL 77, SEBL T BB 3 N A, 6
RICRMEA I ETT FEA SN o AR HEFRATO 07 B A IAT I B, FRANTHE S S A
W T =S A A E ST A OB FEFAT R R, A7 R R A3 [
R, HRBIN R KGR . A3, BATRA 240 =S D% ) Bk
T 707 AR B 07 F A SOBL 2 2 S B BV B F A R DR R
BN, XN JE SERT A SNSRI TR RE .
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2.2 JRYIBT AR F AR

FEZ A /NHE KR TAE, =5 PR AL B N, JATTE 7N
WG 75 5 R SR e EARR I TAEF, BT RAAR I, DL TR
e N E BRI, BRATIAES%E A 2-((4-methoxyphenyl)ethynyl)-1,1'-biphenyl 1a
BRI, UL =S AR AL IR AR, AR BT T ifiE. Kk
L SEAE CIEHEAT o 7E 200 mol% AT & T, 3 AN/ E IR A R RIE TS
Bl r= i, T B 75% M R EYS T JERE (32 2-1, entry Do 2 FRTLAGT
P FRA TR R R B DA B PR BEEA DR IR REI 7R, R IR SR SR A kAT IRl 2R
3N 80%, 40% (3 2-1, entries 2 1 3). B, URAVEH 28 2 Fa1F
RTINS, 225 3 AN/ L 1% A% 77 28 51— 1 4G 3] 6-endo-dig R~
i 2a, ISR 66% (3 2-1, entry4). fdF DUEMIE A [ MBI, [F2BR 2
BRML, ERE RS, HPEREEE T (R 2-1, entry5). 4 NAEF A A EEAT
i, 3 AN/INEFERHE AR TE 4T, RS R WA BRI &, 183 T HERICE 56% (&
2-1, entry 6). —LJERATEFIZAF T =R 5 HIM I BB KR (3£ 2-1, entry
7)o FEN R UTRATI A 2L bE 9 SR LV IS [ = 28 A B Bt iy, A= 2R
KRBT R 70% (R 2-1, entry 8). SN HIH = Z HIUAE & Heid s,
FEAZ AT T A0 HA B B P2 28R TARF5 ) 93% (3R 2-1, entry9). HIL, —
ARG E A T R B AR A o B2 T R IRATT LR SR i Ak R ) R AT T I %
BATHE T 100mol%, 20mol%, 10mol%, 5 mol%IYNNE KR ERE (3 2-
1, entries 10-13). RN F=ZFRAEHT AR T %A L4, ¥4 90% (58 2-1, entries
10-12). MELLFIHER D F) 5 mol%, N RISA IR, EET 95%, %
ST B R WIER] T 94% (£ 2-1, entry 13). FERAEE AT RES i T
TR B REAG, BISONE /N B H UL, SO R S AL P e 1. 7R
RN AT, FATRE T — 4 BARE, 568 BEoR, 7EAE F AR
TR, RNANRET, KRR R (R 2-1, entry 14). A AT LA

S, XA AME B R

®2-1. FFAL

\\ AICl3
O solvent, rt O
M
OMe OMe
1a 2a
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Entry Solvent AICl3 (mol%) Time (h) Yield (%)’
1 Acetonitrile 200 3 0 (75)°
2 Acetone 200 3 0 (80)°
3 Methanol 200 3 0 (40)°
4 EtOAc 200 3 11 (66)°
5 Tetrafuran 200 3 23 (40)°
6 Toluene 200 3 56
7 NEt; 200 3 58
8 CH3NO2 200 3 70
9 CH2Cl, 200 3 93
10 CH2Ch 100 3 90
11 CH2Cl, 20 3 90
12 CHxCl, 10 3 90

134 CH:Cl> 5 3 95 (94)°
14 CHxCl, 0 3 0(99)°

# The reaction of 1a (0.2 mmol) and AICI3 in anhydrous solvent (3 mL) in a reaction
tube was carried out at room temperature under argon atmosphere. ° Yield was
determined by '"H NMR (400 MHz) analysis of the crude product using CH>Br> as
internal standard. ¢ Recovered Yield of 1a. ¢ 1a (0.4 mmol) in anhydrous CH>Cl> (6 mL)
was applied. © Isolated Yield of 2a.

2.3 RYIEENERT T

FEME T =S AL I S5 B S S S AR 2R A I AT S AR 2541 T I
RIS T IRFL . R &R P FRATE R T — R AR, XY,
PA K 22 AR 3 F N B, X0 AN TR B EE () PR 28R TR T T B B8 2
R [ LTRSS R S~ 2R . R 2-2 ISEE s R RATAT LA, R 2
e T IR P BHEXS S SR, BARRIULE T S SIS TR, OB 2 A o T
4 R GG HER IR EGE CHURINT, SN BB AT FEAIC, ISR E K . i,
o R E SRR IR AR, FEERON 94% (3R 2-2, 2a); M RUEmEMEHE TR
AN, N FERFEFEAE] TIFE 98% (K 2-2, 2b). 5§k T3 B B L HUAR
MIEEITL 5 NI, RIBIFEER 70% (R 2-2, 2¢), 55473 H 2B R
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Yy, WSS E R A A RE R TEAS, RN =3 73% (58 2-2, 2d). TEHURIEMR
VIR IR S 22— PR AIG, 6 DN/ JE =38 52% (3£ 2-2, 2e). 5l i 1]
ANE], R AT, OS2 BN, SR FE R A, SRS [R] K S
Koo iltun, AR A S HR IR MLE B T R 72 NG, B 41% 7= 2
1FEAERM = (R 2-2, 20 M R'BIHBEFHNHRATTUEH, 5 R %
RZRIR B T = % FE R IR 8 7RSI FE 57 38, AR L 2 8 R waon IR
AR, AR, ATEERE R AHERE BT PRI e L H 4 76
IR T % ET A, AR TGRS =S4 mnier, MmHEsh kM7, 78
SERL TR R RS AT i, R B HL TS AR R AR 7 5 b = AN 9) 2,
2e, 2h. A3UNt R ESHE IO ER 1g, EHURIEE R 1e, 55U T3 FA
WL The XX = SRR /3BT R B, 554 B J= HD I B A =26 I
XARILLE T 7= 2g (A B FE BRI e, 779 2e FIAERNWATE ., 555
B T RE R M AL, 55 R TSR DN R S AR AR AR, ER ) 2h )
PR 5P 2e LW A KK, (HZ729) 2h (ARG B fe s il . i&
PAX b S (R, AT RERR Y 2g B TN 2h 1 IS SS AL 7R bR I X 1) 67,
KCAE () BRSNS Bt R 5 SR F R0, ToFLHEh s RN, AT 3
FURFL T B B RAK, O AR, AR 5t al DO R 2L
Rio XTEGF=4) 21 F1 2e AR I, F9HEHRFIREFN RN A — @ MHIER, XA
7E 2 AR EL 2e 2R Al BERE K A1) . SR1T 21 AT 2e I~ 235N R, X AT R
R bR R BIHh ), SEURIE S = SRR R AL AR T PR T E
R RBATTAHE A T =AY BRI JEORE, FOT 197 43 2 2§, 2K, 21
fEIXLE “HURERN B, FRATE E T R iR R A R A, R T HE D
RO o MSEIG O AT DL H A f s X i FEL 3 AR B T AR i
2. Flin, R NimiEm FiedE, R2 OISR T HEE, R USRI TR
(19 1§, 1k, 113588 DAL F5 077 2645 B0 R S0 A0 S o = ORI LT 2K
J 9 AE 42 T R ) JIEAH FE Th A PRI 7 o A = U OB, FRATTE E T
R il R A AL, R2ODESHER FAREHIH 2L . 08 R TR, 15
HT —RFHHE. TTUEH, BRI FAZMAER . O &R T
SR, 32 S5 T R A F A, SR 2R AR, IR 9 F - 2k 4]
FAARS, AR, DAJOIEIE, #O6 SOBEA I [A] DL K= o, 7= 2R 7E 88%%
95% A]. [HIFE R, BhE, W, BRIk, WEBEE, Wik, B peH
TEAZ N BRI R . IX X F4 5 7= S AR AT AR AL 2 B e E

R 22, R EERR
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5 mol% AICl3

CH,Cl,

2d, reflux, 7 h, 73%

2e,1t, 6 h, 52%

O

2h, reflux, 72 h, 50%

2g, reflux, 72 h, 40%

S O

OMe

OMe

2j, rt, 2 h, 96% 2k, rt, 2 h, 90%

2b, rt, 1 h 40 min, 98%

2¢, 1t, 5 h, 70%

2f, reflux, 72 h, 41%

2i,1t, 51 h, 51%

OMe

o

21, rt, 14 h 15 min, 92%
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O Br
OMe

OMe OMe
2m, rt, 2 h, 95% 2n, rt, 2 h, 90% 20, rt, 2 h, 88%
O rooom SSes
OMe OMe OMe
2p, rt, 24 h, 92% 2q, rt, 24 h, 91% 2r, rt, 24 h, 89%

# All reactions were carried out using 1 (0.4 mmol) and anhydrous AICI; (0.02 mmol)
in anhydrous CH2Cl; (6 mL) in a sealed tube under argon atmosphere. Isolated yield

was reported.

2.4 HIEIFH SR H

R T E R IHLEE, AT T RAL R AR LSRR . [FAL AR LSRR DL 2-
deuterium-2'-((4-methoxyphenyl)ethynyl)-1,1"-biphenyl 1a’ IXFl B BUAC I AEAR i
WINIERLEAT « FEADT T 3 NN PR e 42, BN 100%, 7= F 4
100%. Z LSBT 7 7= it B =R R, 430002 2a-dy, 2a-dio, VLK 2a. Fi7™
BRI 40%, 20%LA I 40% (B 2-3) . 2a-dy /TR AW AL =4, 2a-dio Fl 2a
ST WL . 2a AR BORT BE R A ANE 1 0 1 SRS s . AR
i UL B, FATH B RS =30 )5 W Kap 79 0.7, X2 — DAL — 2%
(A 57 22 S Y, AR 5 A2 06 (RIS 3R A5 o %o B 2H P 2 i — i, i et e A P & 7
IR, B EEN R B 5 EUNT 1. TR RSN I EEHm S, |
TIEFRIRERTAR T, Bk, WwREAMRESFEEER 1.5 2408,
A2 S S X0F 7 ) 358 6 S AN e i A TR UL, s Pl 7 B Re AN R fe i o 2430 7
SRR 2 I, D02 BT . R R 0 I ON T RE A SN R IR BRSO T
BReER . FMERI I HFEHNT 1 RS X 2 — > =R R =A%
REf IS o FET DA E R BRERA, FRATA AR BRI T =SB A 5 5
N2 T B A v SO L, = SR IR A R = R P R s — FERE 5
2 itk S S AL F ML), i X R AR AL TR, R R NE T T BT
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il R AR, Ko TR ERER, d PUERIREE A LAIAIPRIA R S5
KAEAERIPO, AR AT S 8. TG B sl d PUIE R REIR 4 s R i
ke, CURTTRERIBREGE, B s s A AR AR FIRY, RS RREBRE UL R s B o K S
TR PR AL P S 5 H A AR AL (1 07 FEAL AR 1 PRI OR AN R ) S S AL ER o 1T
Bt 5y iR AL I S LA 1 AR -1 3w 18] (R S AL B, BT, 7 B AT 110
PR S b, EIRYIn R R T, R NS T JE A R A R 2 I s R

20 VTR TR R

O
40% OMe
23'd4
H
\0 5 mol% AICI; _ Q
A\ dichloromethane, 3 h D Q
O 20%  OMe
OMe 23-d10
1a’
H-D exchange Q
product H O
40% OMe
2a
c ion=100% K 2a-d %
onversion = ) HD = = 07
Total yield = 100% 2a-d19% + 2a%

K 2-3 12’ [FAL B bRid S5

T U ERyseie s, JAEH T RN wE 2-4 s, =&
BEASEY ST 1a FPRIEBAITERE G AP, S5 A &5 H
BUARAE BT IR A (Wheland intermediate) B4, 35 FHR (A1 7 25 AL 1)
A ARAE R T HEER AR C, fkfa iy FEfmd s C & A R A sl Oy 4k

Pk 2a, PR AL = AL,
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AICI3
2a
Coordination 1a
protonlysis
(\\
Al \

2-4 F]REI S SLALER
2.5 RE/NG

ARENEEET LB TR =AML 7T A S 7 A SN T AR A
ZHT =3 PRI TARR SRS b, AR T — BRI AT EAL I k. SR AT
BRI 5Ol SCIR B 2R IR b, 20 s S 7 DL R A A 7 FH R i ik
PATVERE T — B L WTT R 5 Wik = R AL I 70 7 BRI I 07 AL L
JRLUA SRR, ANTRE 5 mol% &M = SR, Wik T atRedtT. b
Ja BATTN SN YR EVE AT 7IRTT, W R, AL, R, B,
B, WEHESE— RIRIOE T RE R, 9 TR RTRTT, AR IR RS — &5
HREBRIL TR EREESYE. e, RN EAT RIFREEER A B, 4]
Xt BN FRIATLER tREAT 1A R IR

XN IHLERAIE SR B, S MIAR T REZE 7 e 1 Se R A S . = S AR AE
Forp R R AR IO AL, RIS, (A3 B s 5 e  oR rR R E . i
e WA 52 55 PR BEUR T B B T4, TO0T 2R A S AL N 2L (B AT
TEENE, MZ ST RV ER IR Y], = @A ML I =07 Bl S N AT
PN I = S R IR B AL B AR e B 7 AR SN A . =S BRI
FEAUHEIE 2 L S S I RS, T 38EAT IR /1253 i S i AL 1 A, X5 kot
RAABIKN d PUEBRRENFILHETE. B2, ZRNFEE T HEERNMATE
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W, JNZERGHTIN C-C #EG2 ML VB 5k, RNy & UE REFIL ARG 1 =k
SEH R AR, O JE 86 it T RS A I R AL I R 25 25 S I 1 VIS ml AT 1Y
VIS

50



B ERZAM g

2.6 23R

[1] (a) G. Heyndrickx, P. Brioen, L. Van Puyvelde. Study of rwandese medicinal plants
used in the treatment of scabies [J]. J. Ethnopha., 1992, 35: 259-262; (b) S. Song,
X. Li, J. Guo, C. Hao, Y. Feng, B. Guo, T. Liu, Q. Zhang, Z. Zhang, R. Li. Design,
synthesis and biological evaluation of 1-phenanthryl-tetrahydroisoquinoline
derivatives as novel p21-activated kinase 4 (PAK4) inhibitors [J]. Org & Biomol.
Chem., 2015, 13: 3803-3818; (c) Y. Wang, G.-Y. Li, Q. Fu, T.-S. Hao, J.-M. Huang,
H.-F. Zhai. Two new anxiolytic phenanthrenes found in the medullae of Juncus
eftusus [J]. Nat. Prod. Commun., 2014, 9: 1177-1178.

[2] D. Xu, R. Jin, W. Liu, F. Ba, Y. Li, A. Ding, H. Guo. Neodymium-catalyzed
intramolecular alkyne-hydroarylation with arenes [J]. Tetrahedron Lett., 2016, 57:
3235-3238.

[3] N. Kato, Y. Tamura, T. Kashiwabara, T. Sanji, M. Tanaka. AlCls-catalyzed
hydrosilylation of alkynes with hydropolysilanes [J]. Organomet., 2010, 29: 5274-
5282.

[4] S. Pascual, C. Bour, M. P. De, A. M. Echavarren. Synthesis of fluoranthenes by
hydroarylation of alkynes catalyzed by gold(I) or gallium trichloride [J]. Beilstein
J. Org. Chem., 2011, 7: 1520-1522.

[5] K. Amit, L. Zhenghua, S. K. Sharma, V. S. Parmar, E. V. Eycken, Van Der. Switching
the regioselectivity via indium(III) and gold(I) catalysis: a post-Ugi intramolecular
hydroarylation to azepino- and azocino-[c,d]indolones [J]. Chem. Commun., 2013,
49: 6803-6805.

[6] G. Lemiere, B. Cacciuttolo, E. Belhassen, E. Dufach. Bi(OTf)s-catalyzed
cycloisomerization of aryl-allenes [J]. Org. Lett., 2012, 14: 2750-2753.

[7] L. Q. Zhang, Z. C. Wang, S. X. Tong, P. X. Lei, W. Zou. Rare earth extraction from
bastnaesite concentrate by stepwise carbochlorination-chemical vapor transport-
oxidation [J]. Metall. Mater. Trans. B., 2004, 35: 217-221.

[8] N. A. Paras, D. W. Macmillan. New strategies in organic catalysis: the first
enantioselective organocatalytic Friedel-Crafts alkylation [J]. J. Am. Chem. Soc,
2001, 123: 4370-4371.

[9] S. F. Hall, A. C. Oechlschlager. Cationic rearrangements and cyclizations of
diterpenoid olefins [J]. Tetrahedron, 1972, 28: 3155-3173.

[10] S. Giovanni, M. Raimondo. Use of solid catalysts in Friedel-Crafts acylation

51



B ERZAM g

reactions [J]. Chem. Rev., 2006, 106: 1077-1104.

[11] V.Jonas, G. Frenking, M. T. Reetz. Comparative theoretical study of Lewis acid-
base complexes of BH3, BF3, BCI3, AlICl3, and SO> [J]. J. Am. Chem. Soc., 1994,
116: 8741-8753.

[12] H. Chermette. Chemical reactivity indexes in density functional theory [J]. J.
Comput. Chem., 2015, 20: 129-154.

[13] R. Rukkumani, K. Aruna, P. S. Varma, K. N. Rajasekaran, V. P. Menon.
Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA
induced oxidative stress [J]. J. Pharm. Pharm. Sci., 2004, 7: 274-283.

[14] G.A.Olah, Y. Halpern, J. Shen, Y. K. Mo. Electrophilic reactions at single bonds.
XII.  Hydrogen--deuterium  exchange, protolysis (deuterolysis), and
oligocondensation of alkanes with superacids [J]. J. Am. Chem. Soc., 1971, 95:
1251-1256.

[15] (a) K. T. Leffek, A. F. Matheson. Secondary Kinetic isotope effects in bimolecular
nucleophilic substitutions. VI. Effect of a and B deuteration of alkyl halides in their
menschutkin reactions with pyridine in nitrobenzene [J]. Can. J. Chem., 1972, 50:
986-991; (b) A. J. Kresge, D. A. Drake, Y. Chiang. Secondary isotope effects on the
ionization of 2-nitropropane [J]. Revue Canadienne De Chimie., 1974, 52: 1889-
1896; (c) K. O'Donnell, R. Bacon, K. L. Chellappa, R. L. Schowen, J. K. Lee.
Catalysis in organosilicon chemistry. III. Catalytic mode, solvent isotope effets, and
transition-state structure in hydride expulsion from silicon [J]. J. Am. Chem. Soc.,
2002, 94: 1847-1897.

[16] G. Barkhordarian, T. Klassen, M. Dornheim, R. Bormann. Unexpected kinetic
effect of MgB: in reactive hydride composites containing complex borohydrides
[J]. J. Alloy. Compd., 2007, 440: 18-21.

[17] R. M. Wightman, S. P. Forry, R. Maus, D. Badocco, P. Pastore. Rate-determining
step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2°-
bipyridyl)ruthenium(II) [J]. J. Pharm. Chem. B., 2004, 108: 19119-19125.

[18] G. Dyker. Transition metal catalyzed coupling reactions under C-H activation [J].
Angew. Chem. Int. Ed., 1999, 38: 1698-1712.

[19] (a) Y. Kido, S. Yoshimura, M. Yamaguchi, T. Uchimaru. Aromatic. BETA.-
silylethenylation reactions via organogallium compounds [J]. B. Chem. Soc. Jpn.,
1999, 72: 1445-1458; (b) N. Chatani, H. Inoue, T. Ikeda, S. Murai. Ru (II)-and Pt

(IT)-catalyzed cycloisomerization of w-aryl-1-alkynes. generation of carbocationic

52



B ERZAM g

species from alkynes and transition metal halides and its interception by an
aromatic ring [J]. J. Org. Chem., 2000, 65: 4913-4918; (c) T. Tsuchimoto, T. Maeda,
E. Shirakawa, Y. Kawakami. Friedel-Crafts alkenylation of arenes using alkynes
catalysed by metal trifluoromethanesulfonates [J]. Chem. Commun., 2000: 1573-
1574.

[20] D. E. Woon, T. H. Dunning. Gaussian basis sets for use in correlated molecular
calculations. IIl. The atoms aluminum through argon [J]. J. Chem. Phy., 1993, 98:
1358-1371.

[21] C. D. Gelatt, A. R. Williams, V. L. Moruzzi. Theory of bonding of transition
metals to nontransition metals [J]. Phy.Rev. B Cond. Mat., 1983, 27: 2005-2013.

[22] K. Komeyama, R. Igawa, K. Takaki. Cationic iron-catalyzed intramolecular
alkyne-hydroarylation with electron-deficient arenes [J]. Chem. Commun., 2010,
46: 1748-1750.

[23] N. Asao, T. Sudo, Y. Yamamoto. Lewis acid-catalyzed trans-hydrosilylation of
alkynes [J]. J. Org. Chem., 1996, 61: 7654-7655.

[24] S. M. Hubig, J. K. Kochi. Direct observation of the wheland intermediate in
electrophilic aromatic substitution. reversible formation of nitrosoarenium cations

[J]. J. Am. Chem. Soc., 2000, 122: 1359-1368.

53



B ERZAM g

BB ZRFERRELRIES TAS
75 ZEAL R N 5T

3.1 REBAER

JER—REEMIBME ST, MUERB=IHIE R, EEERAER AT
ZWIN . Hil, CE2ATZHRMARIE TIEHEZRFIE R, H, JR-and
& B T N A DT B IS T BEORBI R (B 3-1a). 2017 4F, A1/
AR IE 1 E B e R AL IR 231 N (R RN 5 A PR S 05 B AL S« 25 S 3SR
IXAMEZL B FEME, TRATT A B AR B —Fh S 0 2K 7 V2R S I A 25 4 1 B
(E 3-1b).

(a) Previous work:

cat. [M
. . M v M =In, Pd, Au, Nd, Cu, or Al

(b) This work:

@ @ @ @ 15 examples
H 3 mol% Fe(OTf); O up to 98% yield
\\ high functional-group tolerance
CH3NO,, 60 °C H

Kl 3-1 o FINET RN

3.2 BREE 5 BR AL B R B R A

&

A ER R S BOURTRT RN, BA RN 25, SRS,
fEfb S A R Z R . AL, AR A T e AP, (A
B, (& 3-2)
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RIS

m\(O ©i

3-2 BRAEAL I 5 S

© FeC|3

UEAt, BRAE NG S R, REMEALIVERT— KRB BL . FRAEAE s 5 BRI A T
HERSRIE RS T, BRIE RS 0 HR AT SR B SR N, 8 DM I B A B B 7
(B 3-3)
OH 15 mol% FeCly

O
. 0.45 eq. AgSbF
Ph)\ o= _Pn —
DCE, 80 °C, 60% Ph Ph

[Fe] |
- — /Jr\)\ /O()\
Ph X Ph Ph X Ph

Ph™
K 3-3 BRAEAL BRI B0 S B

B ALFRFEIRAE = S AR AL T AE R F N BIED) . RIS 5 R 1E T
Tk, BRI E T S A B 1 B 1, B2 NSRBI I B X 0 HR kAT R
LIRS 2~ . (B 3-4)

OMe OMe MeO
MeO
5 mol% FeCl3*6H,0
| | MeNO,, 10-15 °C 88%
OH Ph
Ph
Ph Ph
B OMe N
MeO OMe OMe
+
l - - Ph
Ph
Ph”*Ph

K 3-4 BRAEAL AR D S
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FENIRE = FAMRIAER T, 737 T8 AR ZRANR By i 234 S A A S L A ol

RIERIEAT A, (K 3-5)
OH

/)géf/L\Ph 5 mol% FeCls* 6H,0 Ph
MeCN N
+ > Bn
then 1eq. K2C03 o)

/Ji:rm* 80 °C, 82%

] 3-5 BRAEAL R I s B

Ph

fEAL B % 5 i R = SR A BE MR AL 701 8] FRY R S A A F) S 07 2 A S ML A5
PR = IR S W A Dy s 5 S R AT R e 7 18 bR L PR 2% P, 0E
M5 32 AR I 28 L E B R IR R =K. (18] 3-6)

10 mol% FeCl;
* MeNO,, rt, 78%

K 3-6 BRAEAL AR S

2009 £F, Bo Zhou MR 3K 18 7N /K & = AP 5 BB AL 1) 701
[A] R BRAE B AR AL B N, (8] 3-7) i e BN S A8 50 [ B SR AL, 518 se e S Ak e
RIAN R, 1% AR A ek IR B 1), e S S BT BLER B IR 1, AT
PR EIRAT A, TSR D IR SR8 B R 2501, BRI 2™ it 10 )
BT EAL SR 7 AT RE
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! Br Ph
5 mol% FeClg* 6H,0 g,
+ CH,Cl,, 50°C, 78%

E/Z = 3:1

+ BrFeCI3

ES( ﬂ

FeCI3

’\/

3-7 /\7J<A:§ R 5 W R AR AL I 701 8] AR R PRI 20 A S o

BrFeCI;

2012 4F, Cheng B F0/NALKJE 1 Flifm AN B4 FH i 5 J0r R = AL R A AL 1)
731 AT SRR SR R b A S MO S REAE O °C R RLREREAT, 7RI . B
TR UGS, RN FEFVEE A R (B 3-8) R MAR T4 o-p A
@/‘%Xéﬂ@% N Ja B AR T IR AN RS AR e 2 57 FAB IR B BB it 1 R RE R T

01
o c
10 mol% FeCly /©)J\/\Ph
0
CHCl3, 0°C, 90% 100

Z/E =991

| \

FeC|3 FeC|3

T

3-8 =AML 705 P BB SR R D I e 1 e L

% 2 IR AL IR B IR 7K & S BEA2 e I B RE AL I — MR, 12 B ] LB
P R iR AR, A B RAT A B — AN EE A& S . 2009 4, Darcel B
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TONE R LA 53 iR = AL AR, AKOHsInGR), SEBIL T 50 F R 28 LR 7K
BN Z TARARER T 8 A Bk B 2 B N AR SEBLR AR K & SO o RV
AR N VLEIEICANE R, NS SERTEEEENIEN, Hil, X
(S BEHLERIEAERF R

0

P 10 mol% FeClj
Z 3 eq. H,O -
DCE, air, 75 °C, 80%

K 3-9 = GALBRAEAL IR H IR 2R 7K & B

FH R e Johe de S 2 B A V2 (1) S B2 A B B BT R — A 22k, WO g R i PR e P 42
AT E45LH, 2012 4, Dominguez SEIL T iX— XN o ZMMNFZH BRI, RN
X R A (B 3-10)

| | 10 mol% FeCls* 6H,0 Ph
0 40 mol% pyridine o)

2 eq. 032003 J
NH + N
toluene, sealed tube

150 °C, 91%

10 mol% FeCl3* 6H,0

= 40 mol% pyridine
(@) 2 eq. CSQCO3

NJ\Ph toluene, sealed tube

H 150 °C, 87% o’ ©

K 3-10 =%ALBRAEAL Pk B4 S

=

R UUE Y, ARk 2 TR UM AR FL R, vl n] LSE sl v fe 2 Ab , BE2EAL,
WAL, KEW, freatt, S5 ESRMN. £ E—-ERAMER 7 =&k
VEONERRITCR B RS 1B 1 [ 807 AL 5 7 1 FERATAED . TR AT A
Yo RAT BT N TS, R EE N R e i A AR B AR

BXHTAE. B, AT, FATZul ] =90 PRk kg 2 TR,
SRS vt O 5 I SR 5

3.3 JRYIBt AR R B4

FERMINE SR T5 T, 8T 2Z AT AR R, JAT9REE IR N BRI 71
PR RN R . AT, i T =S A = S R Bk AR UL, A =
AP IR R L RERTVR AL, ISR

FESCISIRIIT AR B, AR LRSS, =R (1D 9K %)

58



B ERZAM g

Wi, RBGREAE T, FFAE Schlenk & H R4 S ST, fEEN T — R
WA S, BATFH A & AT HAl ™ 5, T2 bR 7 R (3R 3-1, entry
D)o XA BEA2 T MG R BCALBA N, A = 5 F R R 2k 9 fhE A Rt i 22 F 2
GO, MITHISS R . R4 ToRISEIed, FRATEH RN R B, 448
fFH 10 mol% &) — 5 FHEEERE: (1D NETJTEAMEA TR, 7EH T~ IR
B I RS 55 A= 2a (3R 3-1, entry 2) . A 7 IS UERCAL VA 72 75 F 52
Wi e B, FEHE TR AR, AT 7 &b N R BER, FFRA A
NI B HiE 24 /NI TS BRATTIR AR B I 21 & 05 A0 i R AR
SRR FNSCRET KA 12 mol%, XU B 1 7EAEEC A7 28 771 H — 8 FF e R 2k
(ID JFaafEA e, R OV IR IS 57 B i 7 Nk AT, OB 1R it A
PAZ3 B (3R 3-1, entry 3)o T RIRATALTH 1 VUSRI v i e B 1 1R
A, dREAF 10 mol% =5 FREEEREk (1D AMEALT, 2R H -FRATE R 2,
Bz FH DU e, FRAMRR AR RIE 07 2= i (58 3-1, entry 4). X FAJHE
SE R A VY Sk AR AR 1 5, (AR OR A — E R A7 ERe Fr 8. T2 304 11k
F T 2 R B X PV R R L, O 22 A TR R BEEEA TS S RRATEIDE 2, 1R
A RS, 10 mol% & 1) =3 R ek (1D 7% iR T sl aefe b & 05 H4k
L, 24 /NS ERATT 3 BS 2 T 14% & 057 6407 it 2a, JREKIRA 79 % JFEHA
AIRPE5E (3R 3-1,entry 5)o IXTIHEE HHT =9 FRARREL (1D AL PEREANE B
T
FERE T ORISR, FRATTER LTk 1 AL ER M o S SV 711 A i ik
FRGE, M FRATE A S A 2N 2% 5 R R I, 5T 24 /N AT S 2 T 13%
FI7= dh s FHEEIT 80 Y% [ N AL (58 3-1, entry 6) . S MV AR AT = 56 H s R 42k
(ID (86 G R TEAR 2, IX U6 W] % 2y B PR S A — 58 BIFEM o O 1 ik iX
AMNERE, IATER T8 2 IR R 55 10 -G /K SRR WA A SRR T, AR
BIRFFAAE, SN —RJGEATIFHEA BT 5 (R 3-1, entry 7). R
B RPEHAIAT, AHIXWUESE T RATHSEAE . O REAE N — ARk i, g
AL — SR IE S S, A BRAT TS T 5 S R A 7 R e, Z805 4K OB
HEA RBINAEAT (58 3-1, entry 8), — 7 1H 7] GeS& RN KBk AL BHER,
FyAh— 7 THI AT B2 R SRR I N B © R SR, KORHISS T8k
% Ty Wi, AT FECA BRI IO AT o 32 TR BAT 2 =0 B8k 2R R B /e 37
IR . =R ER B T 2 AL AR, A EZNHESAH, T =n
B, =MERBHO R T REER o BT 2 L IEYE, B S IR Ve Bk s . A LK
B TEBR AT AT TR SR A REHTAS B S S i (3R 3-1, entry 9. X522
I DR PSC S A Y 0 AN R T S S PR TR T — 300K, DR DA 7K R A 2 R OK i PG

59



B ERZAM g

FRERAE N EE 2 IR I RE /7 o AE IR LI I EA b, FRATEM 1 oK i =5 R PR
B (1D S5 BSOS AR, 7R 10 mol% L&, FRATTLA 44 mol%
(7 AR5 AT RN, BT FRIRRATIT, HEXN 52 ATE R Cs
A TIRKBIRDE (58 3-1, entry 10).

Tk FEE X TR RE R 2+ BRI, BB RIX — i BRI SO AR
T SN TR BE 2] 60 °C o SN2 G RATTORHE — 2, &0 24 /N e 3RAT145 2
T 92%MMF5 = E (K 3-1, entry 11). 10 mol% AL & X F—ANMEAL S N T &
WA BRI T 28], T fede TR N, AT 738 RN AR,
FEAE B E I SFAE T, FRATAT DR EAT SERE A, AL 2 1 /KR S8 00T S LRI 2 ]
DRI R AT RE 051 S B AL 2 PR 2 3%, X2 — P ER S NSRS, 178
3% = PR S (D AR, BB ELD, TREAN1E2] T
98% AL RE = 2R, RIS 2 7 B =3, IA ] T 95% ML F5 /KT (3 3-1, entry 12).
N T BRI RN H = A R R (LD BB, JRATET T #3525, EdA =
AR E: (ID K25, 1a B RAGEIS BRI E05 B, JFoRHB g E
w= A (3R 3-1, entry 13). /o iEZE H e AR, 3% =S BEIREL (1D i
3, MR 60 °C e A Fe [ B2 A

®3-1. FHuse e

Cat. [Fe]

\ Solvent, 24 h - Q
OMe
1a OMe 2a

Entry Solvent Cat. [Fe] (mol%) Temperature (°C) Yield (%)?

1 CH;CN Fe(OTf): (10) rt 0 (100)°
2 CH:OH Fe(OTf): (10) rt 0 (100
3 CH.Cl Fe(OTf): (10) rt 0 (12)°
4 THF Fe(OTf), (10) rt 0 (4

5 CH;NO» Fe(OTf): (10) rt 14 (79)
6 CH;NO, FeCl, (10) rt 13 (80)°
7 CH:NO»  FeSOq4-7H0 (10) rt 0 (80)°
8 CH:NO» CpaFe (10) rt 0 (100Y°

60



B ERZAM g

9 CH3NO:>  Fe(NO3)3-9H>0 (10) rt 0 (100)°
10 CH3NO> Fe(OTf)s (10) rt 44 (53)°
11 CH3NO; Fe(OTf); (10) 60 92 (0)°
124 CH3NO; Fe(OTf)s (3) 60 98 (95)°
13  CH3NO Fe(OTf); (0) 60 0 (100)°

2 All reactions were carried out using 1a (0.2 mmol) and Cat. [Fe] in anhydrous solvent
(3 mL) in a Schlenk tube at rt under argon atmosphere. ® The yield was determined by
'H NMR analysis (400 MHz) of the crude reaction mixture employing CH2Br, (0.2
mmol) as the internal standard. ¢ Recovered yield of 1a. ¢ The reaction was carried out
in a sealed tube. © Isolated yield of 2a.

3.4 JRYIE BRI

e T s AT AR P2 G, AT AR E S 2 70 RS &
P, ERENTRI T HHEEARE R ZRIR At ER BTN (R 3-2). @ b
TR, WA R T6 7 8% 5 BTN, T RIS e T He 7 ]
X R BEIEEA o HIRATRARM — 2, AFRAME R FE AR R Ar' Ayt B
(ECARIE B, 223 24 /NI R BNAS R TR HIEERE (R 3-2, 2a). ZEXA
SERI SR, A4S AL IR A RFERERIE, B =5
IR T 9375, 24 h J5 UL 83% MR SE R M. (3R 3-2, 2b)o WX PIANEE R B AT
DB, BEA DGR 2, RPN R K, KRR THEL
e 3 23 ol S B3 R HR = ) o S 800 B R ORI AR BATT 2R 7 H 3
Ar' FREURES, FILEBER LR, B TEENER, Bl e n
HEHLF RN, AN LU AR T S A58, PR DAl M A 22 R R T R B
GER AN ZE T o RO BB OL T, IS FEARS, RIS, S R)E
L 41% 07 R AF B A 5 FAL 7 i (38 3-2, 2¢). X —45 BAIFSE T RATHEE 13
HL 8 A R T S AR ¥ o 1 S B RORE R, FRATTAR B B 1 VA BRI 1 Ar!
DR RIS . BT RERA R TR EE A, A TR RER,
I P AT A, R, IR, TR0y B = b 7
BT NN TERL, FERE M T — P E (K 3-2, 2d). N THIIE An |
(TP R 25 A8 SRR ], FRATT B S AdE T 55 R T AR A, A TRATE R 2
M Ar EE W I A RO, OB CLEAT, TR DT T IR 120 h BN
J&, MARBEARGI T AT A A (R 3-2, 2e). B, AR A kLR
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B Ar! b BRI H - A ST AR OBE ) R

N T HEEFHARTE A RER B H RS, FRATTR O AR R AR Art R
WAkl FREUREE, X2 FINTE Ar' RIE EARAE S, AT LIS 2
U (S o AR S FRAT T HE T, BRI i 5 M0 IR s I J 448 2 il 225 1R 25 1, 4K Ar?
IRIR[P) T 2 % R A 59 I B T IiE 1, AR T I ST« TRBANTE %
7 XA R BRI AP N RNJEYD, 36 /MR NS EI T 83%7 7 R INA T
R (R 3-2, 20, RERERIARIRSS, (HEUEH, M5 A E
(1) B~ 2050 N7 oF I 7 P W S8 PRI, Ar® b PR B 0O X s I 77 3R R B M AN A2 R 4
BR . TE1S3 1 554 1L A FR R S B g SRRt fe, FRATAR Sl A 1 HE 11tk
RE SRR 1) A A EROEEl IR, SRR P 2RI (R ARAR 2a G BT R AN
FEK . IXAWUESE THRANIKT A B ARSI (3 3-2, 2g).

TESERL 1 Ar' A A RIR 1[0 BT 2R I R 52 LU, FRATTFFUEHR 7T Ar
R ZREASN 2 I BT R AN A8 B 5 ) o AR LR HE I, T ) 2 E & - LUS 26 Ar
AT RN, Btk A EHF R R, SRR SR, "M
FEERM . 7E AP I B RSk, FRATE R TR A AR F 2
25 B T IE IR IGIFIRATHES (£ 3-2, 2h). TULFEIRIRAIGE SR+ Ar' Ey
AEEHURIRIR, T AT DUEAS R B = 26T . A bR A7 FE R ) OB 28 SRR B,
[ AFAE G920 TR P26 T, OB I [A) R P2 28 3 A 52 25200, 24 /NI 5
WARLL 91% B F5 7= 2645 3] T A 05 54 = it o 193] A 5545 HL 7 B A0 I R
S PSSR G , TRANGRS T T H I T 95 TR EIR R BRI . MR B R
ATLUE Y, 5900 L1 B SO (R #EE R, 24 h JG IOBEEL 97% ) LF- € B 17 3
BB TEF RN (K32, 20, RERXRSAMEN T AP FRF % ESH
FIF S SAYE, (H% RS N Ar EEURIE A7 S B, (E Ars (TR
e HL T IE P A REX S FUR B R A RIS, IX AP E F 2R AR s R T 21 1)
LI AE R

B R A A2 — N E U S 5 A AME B — A EZ R N
TR =R PR L (D A5 MR I S5 B4 S SR B e A1 A1
BATEE T At A1 A EREURIEAT, 2302 X A7 F A S BUARE Ay ARG R S
AR Ar?, WA 1 S 0L e85 B8 07 AR A 05 AL 7 o BRI AR SR L 1
BH, BT HE R, RN, B S AEE ) 2 R, J
FIX— 5, BATE LW T A LRI N I5m . SEIRat R, 2 AP L
FFRFEIRBIE, 27 48 /I JEEE] T 54%H= 5 (R 3-2, 2j). XE&E—1
AR R AR, R AP FaRgs LR A AR BRI AS AR I BL AT, (Ha
FREENEN— AT Z BB Reld, R E 77 B R B RES A S & [F] 2h —FF,
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RAMBIR T 1E A AR AR T RBIOIRIE RO, AP LT
SRR SIS, 25 R DIS5 40 ot TR B A5 4 52005 B RN 107
(%32, 20, FRILESN, TR R E, ThZ S RAAILR
RIPO, T 21 A0 28 RIS REIL, AC LIRS MG RMIPR, A
KRBEAAT I, 35— SR ATLAUR 0, TE0 20 AHRE T 2h, JRB % B T
o, BRI AR LRI REGLIE R BIATHEAT S, B AT LU
FERPHG 20 B0 2F M4 S, USRI, BB BBILUR , AR
FRSIE BRI T AT T 30— R BRI 80 8 5 40 T 10T flE % 3-2,
2. AP LI TR T USSR M RS AT,
S5, RBIER 2 AP ST SRR, X Al R
FRILT thok. MEHTTUAH, AP E3INTRBIER, RMFHE 120 h K5
W (R 32, 2m), BURRBIRELANIR, FRESEEAARR. 3K
SHOETT OB AR, BB TG EIE T 04 TR, B P EEN S
W EEIBAE R, RGN TR, (R TR, UK
FHEE. TR, SRR, REEKEE TR (K32, 200, 36 4
NIRRT BB SO%MI RS HALT 4%, KR HIT AP L3R s TIE
FEORBL % R TS . BTN THEH, (LA i1 T FEIER) pen
SEHRIED, e E ROt T TR SR AL AEARRE T & FR st T
S, TR S BT B K . 20 (R RLZE AT 2k 55000, 7
AGERIRT WS 2 ARG An L3 TSR BT FLR — S0 (% 3-2,20).
FURRATELE AP E3IATHE, (9 MR0E TH, An L3I ABIELUR,
SR IR FFAE K, J2RL7 3 TN (32 3-2, 2p), SRR 11 BB R0 172
o 5 TR AR ), T 2 — LT

R 32, RYEEHRTA ¢

Y el

3 mol% Fe(OTf);

\ -

CH;3NO,, 60 °C

Uy ()

1 2
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BOAG

<
o

2a, 24 h, 95%

2d, 87 h, 38%
MeO

BOAG

2g, 36 h, 52%

2m, 120 h, 93%

Me

BORG
)

[}

b, 24 h,

oe]

3%

BORG

2e, 120 h, NR

N

©)
<
o

2h, 24 h, 91%

2n, 36 h, 50%

2¢,48 h, 41%

BORE

<
o

2f, 36 h, 83%

vy}
=

BORE

21,24 h, 97%

21, 36 h, 77%

20,36 h, 41%
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O~

2p, 48 h, 52%

¢ All reactions were carried out using 1 (0.2 mmol) and Fe(OTf); (3 mol%) in anhydrous
CH3NO; (3 mL) in a sealed tube at 60 °C under argon atmosphere. Isolated yield was
reported.

JVE [ NAESRE = BT 1 R, SR, T S == A8 T A S L JEORMEAT B/
PRE—ERE R ARLEEER R, Bk, N RAE— MV AT AT, 15
ARG OSBRI, BRI S NAR SR B 18 LAANEE R Se 3 B A A
7=, IR AR S RERESAESKPR P A N E T A EX— 5, AT RIE=
BUTRRER (1D AL AR 77 NS0T S A SO B SEBR BN, AT TR A
RHES T R FAVEH T 3.6 mmol, 1.036 g HI4rT X SRR
HONIRE £E 3 mol% Fe(OT); AL, FHIE G IR LT, SOMIRE
60°C. SWMEREH], BIMERY K&, =9 PRIk (D AR E07 R
FIARIRBENS L 81% )7 2 4G B FE B ZEM R 07 B0 7 it o SXIE B 132 S L A 5
BB ME, WO IZ S NAE Tk A R L R 25 & i B BE 1 M AL

3 mol% Fe(OTf)3 .

AN O
CH3NO,, 60 °C, 24 h Q

OMe

1a OMe 2a

1.036 g (3.6 mmol) 81%

311 bR R A
3.5 RMHLERN

BT UL BRI OSFEsE, BLK ART =S R AL B b S 07 B A S B A . 3K
ATZR AR T — AT RE S S HLEE o 7E 2K 5 R = s s IR Bk (11D i/E
Ty T AHARIRIERT Fe(OTh)s BB IRIA 3, Befr i b B 1 2 % R
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AR, B2 RIME N SEAZ AR it B, = SR iR ek (D Wk X — o7+,
SRR T (OTH). HIt, HERBEE 4 BEP . FHRPEk 4 T
IEBE TR, B9 REEAS T, Hik, 28 KRE LT (deprotonation)
A R FER A A S, dralE 5 R — AN ATRE A, FEAAER TS OL T 2
RAEFRR S 72 bR AR AR i SR, SR Rk Ak
A AR, AR A A Rk v TR A o T A AR A T ER AR . R IR AR B
Fe(OTHy &l =5 IR IR 71255 1 (OTF) 454, BFAMMAT]. 5L 1E
o VRN D) iR A 07 B [ B, BARIRATTV A i R A 2530 ) 7 5258
HA] DATRURHRT A2, kAt A B S0 A s I8 I 12 AR B 5 T I A A TR 05 A S
FAL, RO FE A R E SIS PR, CA 1R 8 2 iR B TE A b i VR F
fE1E.

2

protonlysis Fe(OTi)s 1

®
H + OTf
coordination

OTf-Fe  Ar BN )
\ AV \
OTf (OTf),Fe \
5 Tf3Ar

deprotonation nucleophilic attack

OTf

OTf—Fg Ar
oTf
4

P 3-12 AT RER SN HLEE
3.6 RE/NG
A SCHR I LS N 2 BT AR, 45 A H TN = S AR AL BLE o

T AT A ST TT . FATI OB IR BRI 5 iR R AL Bl et AL, Btk tk,
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Bk S AGLE N IR — RGP SN, 3 S LB AU ARELYE , kit B iR i B g
AR T NE DT AN AT TARE, AT REH 7 —Fhse K =5
Rk (1D AR 737 0T S S Lo 38X S SV s e, AREC AL
RIS AR o S S R B L 25 A AR ARAL s T =3
Rk (1D TR NPERE . BB )R JRATX R G PEREAT V7T fEZeidxy
HRARIRAEZE b =ANIRIA_ R o 7 RO RO 7T i, BATIAS 21 1A F 2RI B s 72K
JERS S SEAS RIS o Ar' SRIA_F O HE BT SR AR T RN, Ar® bR Tk A
MIT IR o A 1 S R 082 A )7 5 B S S B4 TR g o X B g
MR BVERE ORI, K Rel, Biltn, ¥k, BREE, WA, fifkt, KR
GHBE R REAE B AR P AR EAFAE . JUAN, FET BT E R R, 3R
AT IFHEAT 19 RN, 37K NE ) 25 2R R % S N B A b AT = 24 A 7 A A
PO 3T DL b, SB35, JATHEH T Fe(OTH)s AL I 75 FEAL K S SIATLER .
2SNV AN = SRR AL 1 E 07 SR S NLHLEESRALL, & = 80 P B R B (e AL 1Y
PR S 5 UM ) —3 5. B2, Fe(OTH: ALRIBE 73 N S0 24k = M
HAMGTE R RNE REHI R BIELr, SERVEERIRE =, N5 R AERATA
VIR & e, SEAEBR 29T b B N A SR AL 1 BRI RIS Y [ 2 At
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FBNE =FFERIAELRIES TN
A I LA 5T

4.1 REHRRE R

T 1- 250 AT A SR 2 AR T R =iy v +ht, A H
BN AEYNEERZYNETER Tk, AN CEIHF A TR Z MG i 1- 25T A4
WAL S A T2, Eetnil Diels-Alder WP, J8ER1E e N, 3oV 4 )8
AL TN AL OB, TR I AL I PR AL S RO, DRERIAAL e ST, [T 8 - R AL B
81, PLRIES 5 R NP

it Diels-Alder NG 1-ZEMNT AN 6 BROTIELE EAMEA 5 O 2 6
BRI FT o

1996 4, CharltonJ . L5 N B ARIE T HH &8 HURIE IR 2K FR 4 A0 S P A 05
FRAL G AR % 1 -ZR TR AT AR I (0 & O VER s TR A BT IEF, SR B &
PR AR S VI BR A E T, A AR AR AN RS 1Y) S 2R Ik el o ) A
ZJE AR B R R R A ) A4 ] LAAN DS Btk & 93858 Diels-Alder JRZFREAN
BAE T 1-ZEAT AR (B 4-1)

OR4 OH

OH CHoCl = BF 3 H,0 or heat OO
MeO MeO N s MeO CO.R,
Ar ' Ar

K 4-1 ZK R AEIREAL SV 57 BRAL S W SN A 7 1- 22 B T R D ) & 1T 1%

1-ZE B AT A AR T U R IAEAT 3

TMS 1
,_\ O\\ /—COZEt R
R KF/NaH/18-C-6 I
= * S\ * l R
OTf \O

R2 R2
OH

R1

\_/

] 4-2 S PRBRIRI AL G R 1- 28T AR & T 2

2007 £F, Xian H.Z5 ARIE 7 8 SRR A R 1-ZEB AT AP0 ) A 7 104
AR, AIREAAE B EER N DI 1, REE 00 10 R R S A%
IR 2« 2 T IISERZBUC R B ; 3. Michael JIAR N ; 4. LN 5. T8
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RN FERREERI RN, AFEPPRRACE Y. B-IRIEAEY), Michael 32
REIREA BB R CR N 1-Z2MAT B dh (& 4-2)

W R A HUS AL 1-22MAT B & et — R AR LI 1-2%
yRTAEMI G BT iR Pl A E R 1- 2RI AT AR & O %,
AT EEEEMAR. . % SRR,

HLAE 1975 ¢, Dotz S8 Nl A8 788 R RS 5 et &3 e Az ik
BRECALE 1-ZRBRT AR & OT 50 fE G RIS, RNRAFHRAM, I H A
AR R X e, T H B RE R A A AR, Xl SR I 1% BT VE ]
DAk BEPE AR RS A S AR BRI 1-ZEMATAEY), R RIEA & L 2 TE
RIRTHIR & AR B A AR B2 R 0 (B 4-3),

OMe

(OC)sCrs__OMe -co =
+ R——=—Rg XS

/——Cr(CO)3
R

OH

K 4-3 R RISV 5P EVIMEA AR BCALIN 1-Z2 M AT A 0 & BT 7

ZJa, FAt S R AL TR 1-ZRM AT AR 5 T iR AR 2K i ERN 2001
%, Nieman J. A ZF N KPR DUE T 5188 — S ABRAE W IRIE IRV & K 1-25M i
W, AEZEITIES, R AL R AR E A I (] 4-4).

PACl,(PPhs), OH
[:::[j/J47 600 psi CO, 100 °C

Et,N, MeOH, OO

C6H61 MeCN

K 4-4 FAlE G R AEL T 1-22 AT A & BROTE

0 OH

COOMe
O camphorsulfonic acid Oe COOMe
R CHCl3, reflux O

K 4-5 BRUEALR) 1-ZRETEMIN & OTVE

HLAE 1994 4F, Ciufolini £ Nt O RIEIR EMNIHRIR) FERFKMT,
EHBURIE NI IR 2 B4l A WAE A A 1A AT LA R AR 1- 25 i A=t (1
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4-5),

1998 £, Meyer A. LEE ANgtC2RIE 1/ AERKMELERTS, @0 7HK
Friedel-Crafts B4k S WA J(S)-(H)-#a 3~ By 1 5 T ) A% A BROT i, B
Jeilid Stobbe 4L MU M ETR, ZJEFERIR HEALAER] N & Friedel-Crafts
BRIl S A i 1-Z2 BT 2B (1] 4-6)

MeO CHO NaH MeO «-COOMe 1) ACOH, Ac,0 MeO COOH
dimethyl succinate 2) KOH
MeO MeO COOH ) MeO
OH
OMe OM

e MeO

K 4-6 BRUEILH) 1-ZRENTEMINI & BOTVE

1985 4, Janowski F Prager 56 N H ARG 1 HH Moy FRORA 2 7R i s 37 A= il 1-2%
TR AT AV (ERAE S T, RISAEREA BI04, 1-25)
TR =8, b, M1 1-ZEMmAT AN & o7k, SEHEA R
U, AR AT —RYaat (& 4-7),

COOK (0] OH
(0]
HOTs
0] + — - >
i o
ol Ph Ph
OH

B 4-7 BRIEAL I 1- 2R RT AP0 5 BT 1%

1986 4, Sibi M. PAENEH ARG 1 BB THEAL & R 1-ZEB T ALV )6 BT
FEE FEZAROTET, WTREAAE MR PSS 1. EREERERT, RN
BRI 25— 2> T T IR B B 1, 5 B B8 R AR SR A B S S A il s 7 H ) 4
S A AR FERRYE 25 T AEBCE A=ty 2+ [ROSIFTARAE FF SR 1/ FH T AR o
HIR TR, ZERAR T IREE 1,3- Ll 7R B8 4R U R A, 2 f5 A2 il
1-ZEEiTAY (B 4-8).

o 1) t-BuLi, TMEDA o OH
2) MgBr, - OEt i
ot SN NEt, ) MgBrz 2 RO B NEt, MelLi, THF rotl B
= 3) allyl bromide = N =

K 4-8 B THEALET 1-ZREa AT AL & 0T 1

ZJa R T TG R 1-ZZWAT A& ROTEBA ] T — 285K . 2000
., Treus M.AF ANARIE T —Fh B & T HEAG O IAME SN & R -2 AT AP & O
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VEBI ARG T S I P A O SR RSB 1- 25 AT AR A B
(@ 4'9)0

Meo = MeO O X OMe
N MeO
MeO & 1. Mel, rt, acetone MeO HN._ O OH
o oM
MeO 2. NaOH, MeOH MeO e
O reflux O
Br
MeO Br MeO OMe

K 4-9 BB THEALE) 1-22 M AT A=V & BT 1%

1997 4, Hasegawa E.55 NHIRIE T &4 1R F B 2K AR A6 & P75 G R
S N AR 1-ZEMT AR A O EEDY . B, RS RO R A X — e
s B, RIS AR PR RE A B A, TR BOZ S TR RN
RBAE (H4-10).

O o o
: :1(/ —Br hv, H,0, MeCN ; I i y
Me;SiCH,oNE:
COOEt s [j:lficooa COOEt
(o] OH (@]
- . -H*
—
““CH,0,Et COOEt COOEt

Kl 4-10 SEIRSRAET 1- AT & T %

H2, 76 LA E I L 1-ZEM AT AE A RO V22 0, AR TS 2 8, i an
FER NI TFEZ LG, IR FET L], RSGEFENEARAREF, SN AR
BAKRUFSE . Bk, PR HTER, SR Re, BT E XA I 1-255
TG BT ERA T EENE L.

FER BB SCHR PSS R, BRATRIAE & A RSP iR F i, AR 5L 2K A 2
W EWHE IR SAE T, AT LR A Norrish 1T BUGAL S B, EZ RIS FE 2 &
e IR N, AERE A ). Melchiorre TRARZHAE 2016 £EF1 2017 AEAH 4K
RIE T B A AR RS TEC RS T R AR Norrish 1T B 64k 2% e B AE g
HHE, 25T Diels-Alder & M1, K Michael-type B piM (& 4-11)
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1. Diels-Alde reaction (o)

o]

OH | N‘é
Ei HO,, ,Ph 9
Ph single black LED Z >Ph 0O
N‘é
Me organocatalyst
o

2. Michael-type reaction

0 OH o
©\)J\Ph single black LED s Et/\)J\H
Me &Ph o
N Ph
H OR (20 mol%) Et H

4-11 Norrish 11 B4 Ye4b 2 e b

ST VA ERSCIRRIE, AR BRATAH Z AT 7 AR, JATBCAE R & w] KLt
] B (R A BRI IR ), A AR W] DL IR R S #ESIE I Norrish
Bk 2 B R A4y T EHE, 724 I AR, 2 R K 1-
RIRATAEY) (B 4-12), WRIEINEAAT, FATRIRE—MISHER, =R,
BRI 1-Z2 W AT G 5%, 1 HAZ S ROTEAERIR L 25)
R EAMRZ MR .

(0]
Purple LED OH 0O
R Cat. Cu(OTf), OO .
Ar —
THF Ar Ar
R R R
®on
Cu(ll)
Purple LED O‘
Ar
R
T—OTf‘
Nucleophilic‘ Addition
OH \:‘OH (I)Tf
2N Cat. Cu(OTf), AL v
A h Ar )Z>;\ Ar
N
R R

K 4-12 $EH R

HAENZ I E B — 5, EES5 7Tz TAEH R EE 5T, 3
R TR DT
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4.2 JEYE BT

FEASUR AR AH AN B 53 O 48 075 128 27 1R e (0 e I 2 A R Rty =, AT T 43 1
mol % 1] =5 AR R4 VE 9 [ LA TR, 5 mL TG K DU SRR AR S s I 751,
244 LED (LED: ROGTMHE), @AEMFM AT RS &t AT
TS ST, FRATIHE S S BRI B[R] 35 58 9 24 /N, 3XAN S SIS [RD T 46K 22
BRI AK YL, AR AT A N RPN, ATELEHE T R
BRI T MR E5E, RIS, brAERY) 1- (AB-F2REE) -
3- CHf-HZRIE) 2-BR-1-FA7E 4L (0 LED ST RS T, RMEIS 24 AS/NEAT AR
4% I RAGE =) 3- CHf-FIR3E) Z5-1-8F (2a). ZEABRATIRBHHAD NN T
R B N5 25 Ha 12 [ ) 2R o0 e I &8 SR R sz el PRI 1A, 2 R SRR A B4R
THELEE R HL P NS w7 B A R R EE R SOV A5 R 520 . 2 R A 1R B
XS -REHEIREET, & T RIRET 24 /BT B ROBE [R],  JEURHR BI5E 4, FF HLrT BALL
IRPETEHIFE R (96%) 13 BIF=4) 2b, {H 28 i A6 FRATT A BZ =4 1) 45 74 IF
AR 1-ZEMATEY) . 455G 2a M 2b BRI, JATEH R BRI BT 2% E
Xof SN FR 45 R LA AR B BB TR . 24 R JE A SR 3 O -3 2R ) 1
AT LG R PR AR SR AT DAUR]EAT 1, AR AE Ja T — 5 (1 05 B AL EEHEED 2 AR
MER AR DRI BRAT A AR S B A B 2 25 FE N T IR 5 0 05 B AL HE LA IR
HERFOM . H2 TR, TATHEFT T 24 R HE M g B EE I 0T+ s W 25 R 52
Mo A NSRRI 2, 29 R BB UREERT, b S N AR KA (2¢-
20). ZJREAIZERM T EEARRTTH (Ar ) KRGS R, 24753 Ar
IROMEWY IR, AE 24 /NSFRT WOGHI IR TR, R N SE 4, (2 SN AR R AR
SEE A, FRAVIEE 05 IR MEM BRI, 2% RN EILE v LG I RE S T A2 v DU AR
Norrish IT BYRDGA S SN, B AE =5 IR A /E T, Norrish 11 7Y 5
He s B A (A ZIF A S 6m IR0 SR BES AR, AT RE R AR
IR NG 22, DR e Ak R % .

B, T ERSEIRER, RITRIIAUITHE (AD NEFBRIEFIF,
R O A 45 A1 B g W i - I R BE AR, , 23 I SR RS R AT, 15
B 122, Bk, T T — RV 2 BURE R AL AT WG IR,
7E =& R AR AL M N O A B 1-ZE M AT A0 S ST 5T (2h-2K) o [A] B
HBURE 1- (BB-FF2RFE) -3- COff-F2RFE) 2-p-1-FR IR I N AR B, &7 2 BAR
JE AN IR SN ) SR 2 BT R . (2, 0538 (Ar) b & o v 3E ]
i, R FEBNE A W T3 B 05 JE 0, 23R SN A A2 BE B IR 3R AT 1, X T
REfefE RIS HifA R, T % SO0 40 T 5 IR, PRI i fg
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g WA HEAT o &5 2 B S ML AL S5 LRI A 32E AT 75 ATl A H
G ROTE B b SR EIN S0 2R E RERIN 1-ZREMATAEY, XL G
HAREEAE

R 41 ROEEHERTI

(0] OH
1 mol% Cu(OTf),
ool
R Purple LED, THF R
24 h, rt
1 2
OH 0] OH
X CL X L “\
Me CN
2a, 94% 2b, 96% 2¢, NR
OH
“XOH “W “‘OO
2d, NR 2¢, NR 2f, NR
OH OH OH
y O
\ ® ®
O OMe CHO OMe oF,
2g, complicate 2h, 73% 2i, 72%
OH OH
T e
F S ®
OMe OMe
2j, 86% 2k, 88%

“ A solution of 1 (0.2 mmol), Cu(OTf)2 (1 mol%) and anhydrous THF (10 mL) was
irradiated by a purple LED light at rt under argon atmosphere. Isolated yields were
reported.
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4.3 HIEIEHS5#EH

T SOk R AR G A Y, AN ZIR N ATREL T T F k-
IMENLE BT M-SR I AL R (1] 4-13),

X
Ar

1

lhv

®

' o M cuqny Nucleophilic OH
= ’ iti cu(ll
= CU(||)<C—U(H)— AN auln, T Addition _ cu(in
\ X \ —_—
Ar Z/‘ Ar ar
Ar 3 4c
6n Nucleophilic
cyclization Addition J
®
oH OH OH o
Cu(ll
O‘ cumy —— OO <~ O‘ _
Ar Ar f Ar
ap A" 2 4a 2

4-13 PFhATEERINLER

N T AR IS A, AT 1 SO
(6]

Standard Conditi O’
O % andard Conditions

X
h O Standard Conditions O‘ O’
Ph Ph O Ph O

1n 2na, 47% 2nb, 32%

K 4-14 HLEEERH

XEFRY) 21 A1 2m, JFRERA AR S, TR AR T AR ST AR dh o
2n WP WILLELE A%, AT 6-endo-dig WIZRIF /N JTUIAM A M IPIERE] 5-exo-
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dig FIF Ty, XM T Y FF & Baldwin B . BT HEIMERIPLEE A2
A AL TIPS s DRSS S B RO LER AR A AT REE e A A0 e A28 T e 3 ) 2
TN o

MR A EEEIR, JRATHEN AT RERIALEE (I 4-15D0, IR 1 FEDGIRSRAE T
R, REVEEETRA 3. ERMPER T = 8gE L, B Rk 3 7R (A
FE PG =BT SRR N, TR R R4 4a. da 7501 IR 53 R A A
5. 5 AENLIRNE HACH) 207 FIAL I 7 b 2.

0 OH ¢ OH ©oH
_bhv _ U _cu(n, P ,IC“(”)_> cu(ll)
A AN X}
Ar Ar A TAr
Ar
1 3 4a

proto-demetalation J

OH 0
2 5
Kl 4-15 ATREI I M ATLEE
4.4 ARBNG

FEA T AT T AR R, BRATA ] = 3 P e R A A DU A7), SEBL 1 OB AR A
TSR E IR 7 T MO SN o AERT OGRS, 48 R 2R ALK 2RI R 2
WE A Norrish T BDGALEE N, 2 )5 EEHEA R IR a4k, —dfphak
Hh R A = 50 P RS R A P AR A 3 N R A0 NI, AR 1- 2R T A - % A
BN BATAR B A 7 R, AT SRR HL T 3 D ) B B TR IA A S AR AE A 2
o B S AT AEAT , (HZ 5 B2 07 B A th R N RE HEAT Y . 1T HLAE1Z &
JROTETE T BAT RIEPEAR R Rl &4, b &1 20 A B EE D e ik B
I A2 SE EANRES HEAT I o BORIZ NN T 1-ZR B 2RAT AR & R AR
HEE S B2, BTIRYEEVERIR RN FT, L7 T 5 2 Wt 70
AT R R AE AR R AR LT
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\\ 5mol% AlCl;
CH2C|2, rt
Q 3 h, 94% O

OMe
1a 2a

i) 25 Z B NN 1a (114 mg, 0.4 mmol), AICI; (3 mg, 0.02 mmol), PAA
Jo/K CHoCly (6 mL)e FHARE T @A P E IR . TLC St N (P
7. Ak 28R 2 lE =50:1) , 3 /N ESE I . IR TR 2K R A E T
FEEMT B (Belis: Al 545 2a NEK. (108 mg, 94%). 'TH NMR (400
MHz, CDCl3) 6 8.77 (d, J= 8.4 Hz, 1 H), 8.71 (d, J=8.4 Hz, 1 H), 7.94 (d, /= 8.0 Hz,
1 H), 7.88 (d, J=7.6 Hz, 1 H), 7.68-7.57 (m, 4 H), 7.53 (t, J=7.4 Hz, 1 H), 7.47 (d, J
= 8.8 Hz, 2 H), 7.05 (d, J = 8.4 Hz, 2 H), 3.91 (s, 3 H).

U TEMHRIE R ERS 2a BEBTE—.

(1) 9-(4-Ethoxyphenyl)phenanthrene (2b)"

\ 5 mol% AICl, Q
CH2C|2, rt
O 1 h 40 min, 98%
OEt
OEt
1b

2b

1b (119 mg, 0.4 mmol) LA A%z AICI; (3 mg, 0.02 mmol) /K CHa2Cla (6 mL) 1
A R E A P 0 2b (117 mg, 98%). "H NMR (400 MHz, CDCls) 6 8.74 (d, J=7.6 Hz,
1 H), 8.69 (d,J=8.0 Hz, 1 H), 7.94 (d, /= 8.8 Hz, 1 H), 7.85 (d,J=9.2 Hz, 1 H), 7.67-
7.47 (m, 5 H), 7.44 (d, J = 8.8 Hz, 2 H), 7.02 (d, J = 8.4 Hz, 2 H), 4.10 (g, /= 7.2 Hz,
2 H), 1.46 (t,J=7.2 Hz, 3 H).

(2) 9-(p-Tolyl)phenanthrene (2¢)"!

AN 5 mol% AICI5
CH2C|2, rt
O 5h, 70%
1c 2c

1c (107 mg, 0.4 mmol) L} AICI; (3 mg, 0.02 mmol) 7£J5/K CH2Cl: (6 mL) H %
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A B E AR P 20 (75 mg, 70%). "H NMR (400 MHz, CDCl3) 6 8.76 (d, J= 8.0 Hz,
1 H), 8.71 (d,J=8.0 Hz, 1 H), 7.94 (d, J=8.4 Hz, 1 H), 7.88 (d, J="7.6 Hz, 1 H), 7.68-
7.57 (m, 4 H), 7.52 (t, J="7.4 Hz, 1 H), 7.44 (d, J=8.0 Hz, 2 H), 7.32 (d, /= 7.6 Hz, 2
H), 2.47 (s, 3 H).

(3) 9-(4-Ethylphenyl)phenanthrene (2d)!

AN 5 mol% AICI5
CH,Cl,, reflux
O 7h, 73%
Et
1d

1d (113 mg, 0.4 mmol) LA A AICI5 (3 mg, 0.02 mmol) 7E£JG7K CH2Cla (6 mL) H %
A R 4277 i 2d (83 mg, 73%). 'H NMR (400 MHz, CDCls) 6 8.75 (d, J= 8.4 Hz,
1 H), 8.69 (d,J=8.0 Hz, 1 H), 7.95 (d, /= 8.4 Hz, 1 H), 7.86 (d, /= 6.8 Hz, 1 H), 7.68-
7.55 (m, 4 H), 7.51 (t, J= 7.6 Hz, 1 H), 7.46 (d, J= 8.0 Hz, 2 H), 7.33 (d, J= 8.0 Hz, 2
H), 2.76 (q, J = 7.6 Hz, 2 H), 1.33 (t, J = 7.6 Hz, 3 H).

(4) 9-Phenylphenanthrene (2¢)"!

AN 5 mol% AICl5
CH,Cly, rt
Q 6 h, 52%

1e 2e

2d

le (102 mg, 0.4 mmol) Bl AICI (3 mg, 0.02 mmol) 7EJE7K CHaCla (6 mL) 1%
A BB P i 2e (53 mg, 52%). "H NMR (400 MHz, CDCl3) § 8.77 (d, J = 8.4 Hz,
1 H), 8.72 (d, J=8.0 Hz, 1 H), 7.95-7.84 (m, 2 H), 7.70-7.41 (m, 10 H).

(5) 9-(4-Chlorophenyl)phenanthrene (2f)"*

\\ 5 mol% AICI; . Q
CH20|2, reflux
O 72 h, 41%
Cl
Cl
1f

2f
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1f (116 mg, 0.4 mmol) LL AICI; (3 mg, 0.02 mmol) 7E 7K CH2Cla (6 mL) %
A B E A P L 2F (48 mg, 41%). "H NMR (400 MHz, CDCls) 6 8.78 (d, J = 8.4 Hz,
1 H), 8.73 (d, J= 8.0 Hz, 1 H), 7.92-7.82 (m, 2 H), 7.72-7.58 (m, 4 H), 7.55 (t, J= 7.6
Hz, 1 H), 7.49 (s, 4 H).

(6) 2-Methyl-9-phenylphenanthrene (2g)*

\\ 5 mol% A|C|3
CHyCl,, reflux
Q 72 h, 40%
19

1g (107 mg, 0.4 mmol) PL& AICIs (3 mg, 0.02 mmol) 7EJ57/K CH2Cl (6 mL) H %
A BB A - 29 (43 mg, 40%). "H NMR (400 MHz, CDCl3) 6 8.73 (d, J= 8.0 Hz,
1 H), 8.61 (d, J=8.4 Hz, 1 H), 7.89 (d, J= 8.4 Hz, 1 H), 7.68-7.60 (m, 3 H), 7.57-7.43
(m, 7 H), 2.57 (s, 3 H).

(7) 2-Chloro-9-phenylphenanthrene (2h)™!

~-0)
\\ 5 mol% AICl3
CH,Cl,, reflux
O 72 h, 50%
1h

1h (116 mg, 0.4 mmol) L& AICI; (3 mg, 0.02 mmol) #£J57K CHxCly (6 mL) 1/
AR BB P A 2h (58 mg, 50%). 'TH NMR (400 MHz, CDCls) 6 8.70 (d, J = 8.0 Hz,
1 H), 8.64 (d, /J=8.8 Hz, 1 H), 7.90 (d, /= 8.4 Hz, 1 H), 7.86 (d, J=2.0 Hz, 1 H), 7.68
(t,J=7.2Hz, 1 H), 7.63-7.44 (m, 8 H).

(8) 2-Methyl-10-phenylphenanthrene (2i)!*

\ 5mol% AlCl; O
CH20|2, rt
O 51 h, 51%
1i

2g

2i
1i (107 mg, 0.4 mmol) LK AICI; (3 mg, 0.02 mmol) fEJ7K CH2Cla (6 mL) 1%
MNAE BRAR S 21 (55 mg, 51%). '"H NMR (400 MHz, CDCls) 0 7.64 (d, J=7.2 Hz,
1 H), 7.58 (d, J= 8.0 Hz, 2 H), 7.44-7.31 (m, 4 H), 7.29-7.22 (m, 6 H), 2.42 (s, 3 H).
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(9) 10-(4-Methoxyphenyl)-2-hydroxylphenanthrene (2j)!*!

VW D

AN 5 mol% AICl3

CH2C|2, rt
Q 2 h, 96% O

OMe

OMe .
1j 2j

1j (120 mg, 0.4 mmol) LA AICI; (3 mg, 0.02 mmol) 7EJG7K CH,Cly (6 mL) /%
AR B E A P 25 (115 mg, 96%). 'H NMR (400 MHz, CDCl3) 0 8.64 (d, J= 8.8 Hz,
1 H), 8.58 (d,/=8.4Hz, 1 H), 7.83 (d,J=7.6 Hz, 1 H), 7.63-7.58 (m, 2 H), 7.53 (t, J
=7.4Hz, 1 H),7.43 (d, J=8.8 Hz, 2 H), 7.26 (d, /= 2.8 Hz, 1 H), 7.21 (dd, J = 8.8,
2.6 Hz, 1 H), 7.02 (d, /= 8.8 Hz, 2 H), 5.20 (s, 1 H), 3.87 (s, 3 H).

(10) 9-(4-Methoxyphenyl)-3-methylphenanthrene (2k)[!

\\ 5 mol% AICl3 Q
CH,Cly, rt
2 h, 90%

OMe OMe
1k 2k

1K (119 mg, 0.4 mmol) LA AICIs (3 mg, 0.02 mmol) 7EH7K CHyCly (6 mL) 1%
A A P 2k (107 mg, 90%). 'TH NMR (400 MHz, CDCl3) 6 8.72 (d, J = 7.6
Hz, 1 H), 8.47 (s, 1 H), 7.91 (d, J = 8.0 Hz, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.63-7.55
(m, 2 H), 7.52-7.36 (m, 4 H), 7.01 (d, J = 8.4 Hz, 2 H), 3.85 (s, 3 H), 2.60 (s, 3 H).
(11) 10-(4-Methoxyphenyl)-2-acetylphenanthrene (21)"°!
0
ey, =<
N 5 mol% AICl, O
CH2C|2, rt
Q 14 h 15 min, 92%

OMe

\

OMe
11 21

11 (131 mg, 0.4 mmol) PAA AICl; (3 mg, 0.02 mmol) 7EJG7K CH2Cly (6 mL) /%
A A A 77 21 (121 mg, 92%). "TH NMR (400 MHz, CDCl3) 6 8.79 (d, J= 8.8 Hz,
1 H), 8.71 (d, J= 8.8 Hz, 1 H), 8.57 (d, J = 1.6 Hz, 1 H), 8.20 (dd, /= 8.6, 1.8 Hz, 1
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H), 7.89 (dd, J = 5.4, 1.8 Hz, 1 H), 7.73-7.64 (m, 3 H), 7.47 (d, J = 8.8 Hz, 2 H), 7.08
(d,J=8.8 Hz, 2 H), 3.92 (s, 3 H), 2.60 (s, 3 H).
(12) 10-(4-Methoxyphenyl)-6-methyl-2-hydroxylphenanthrene (2m)"!

DV COO o
CH2C|2, rt
Q 2 h, 95%

OMe

5 mol% AICl,

OMe
1m 2m

1m (126 mg, 0.4 mmol) L% AICI; (3 mg, 0.02 mmol) 7E 7K CH.Cly (6 mL) /%
A R E A P i 2m (120 mg, 95%). 'H NMR (400 MHz, CDCls) 6 8.63 (d, J = 8.8
Hz, 1 H), 837 (s, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.58 (s, 1 H), 7.43 (d, J = 8.4 Hz, 2
H), 7.36 (d, 7= 6.8 Hz, 1 H), 7.24 (d, J= 6.4 Hz, 1 H), 7.20 (dd, J = 8.8, 2.8 Hz, 1 H),
7.02 (d,J = 8.4 Hz, 2 H), 5.08 (s, 1 H), 3.89 (s, 3 H), 2.61 (s, 3 H).

(13) 10-(4-Methoxyphenyl)-2,6-dimethylphenanthrene (2n)*!

\\ 5 mol% AICl3
CH2C|2, rt Q
2 h, 90%
OMe OMe
1n 2n

1n (125 mg, 0.4 mmol) LA K AICI; (3 mg, 0.02 mmol) 7EFG7/K CH2Cl (6 mL) 1%
A R E A P 20 (113 mg, 90%). "H NMR (400 MHz, CDCls) 6 8.63 (d, J= 8.8 Hz,
1 H), 8.45 (s, 1 H), 7.74 (d, J= 8.0 Hz, 1 H), 7.69 (s, 1 H), 7.58 (s, 1 H), 7.48-7.43 (m,
3 H), 7.39 (d, J=8.0 Hz, 1 H), 7.05 (d, J = 8.4 Hz, 2 H), 3.90 (s, 3 H), 2.62 (s, 3 H),
2.46 (s, 3 H).

(14) 2-Bromo-10-(4-methoxyphenyl)-6-methylphenanthrene (20)"!

Y
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oM
20

O DV
\\ 5 mol% AICI; N
CH2C|2, rt O
4!»’ 2 h, 88%
e
OMe
10
10 (151 mg, 0.4 mmol) BL}% AICI; (3 mg, 0.02 mmol) 7E /57K CH2Cl (6 mL)
A B E A P 20 (133 mg, 88%). "H NMR (400 MHz, CDCls) 6 8.55 (d, J= 8.8 Hz,
1 H), 8.39 (s, 1 H), 8.03 (d, J=2.0 Hz, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.67 (dd, J =
8.8,2.0 Hz, 1 H), 7.60 (s, 1 H), 7.45-7.37 (m, 3 H), 7.03 (d, J= 8.4 Hz, 2 H), 3.88 (s, 3
H), 2.60 (s, 3 H).
(15) 10-(4-Methoxyphenyl)-6-methyl-2-methoxycarbonylphenanthrene (2p)"

(g coom oo
AN 5 mol% AICI;
CH,Cly, rt Q
O 24 h, 92%
OMe ©
1p 2p

Me

1p (142 mg, 0.4 mmol) LAJ% AICI; (3 mg, 0.02 mmol) 7£7¢ CH2Cly (6 mL) H 2o
A R E A= 5 2p (131 mg, 92%). '"H NMR (400 MHz, CDCl3) 6 8.77 (d, J = 8.8 Hz,
1 H), 8.66 (s, 1 H), 8.49 (s, 1 H), 8.22 (d, J=8.4 Hz, 1 H), 7.78 (d, J = 8.0 Hz, 1 H),
7.66 (s, 1 H), 7.50-7.42 (m, 3 H), 7.06 (d, J = 8.0 Hz, 2 H), 3.91 (s, 6 H), 2.63 (s, 3 H).
(16) 10-(4-Methoxyphenyl)-6-methyl-2-nitrophenanthrene (2q)"

e O
\\ 5 mol% AICl,
CH,Cly, rt Q
Q 24 h, 91%
OMe OM
1q 2q

e

1q (137 mg, 0.4 mmol) L& AICl; (3 mg, 0.02 mmol) 7EJ57/K CH2Cl, (6 mL) H1jx
A R E AR P i 2q (125 mg, 91%). "TH NMR (400 MHz, CDCl3) ¢ 8.87-8.81 (m, 2
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H), 8.50 (s, 1 H), 8.39 (dd, /=9.2,2.4 Hz, 1 H), 7.83 (d, J=8.0 Hz, 1 H), 7.76 (s, 1
H), 7.55 (d,J=6.8 Hz, 1 H), 7.45 (d, /= 8.8 Hz, 2 H), 7.09 (d, /= 8.8 Hz, 2 H), 3.93
(s, 3 H), 2.66 (s, 3 H).

(17) 10-(4-Methoxyphenyl)-6-methyl-2-cyanophenanthrene (2r)*!

Qo= e
CH2C|2, rt
Q 24 h, 89%

OMe

5 mol% AICI;

\J

OMe
1r 2r

1r (129 mg, 0.4 mmol) LLAz AICI; (3 mg, 0.02 mmol) 7E 7K CH2Cl, (6 mL) Hx
A B E A P 2 (115 mg, 89%). "H NMR (400 MHz, CDCl3) 6 8.79 (d, J= 8.8 Hz,
1 H), 8.47 (s, 1 H), 8.26 (d, J= 1.6 Hz, 1 H), 7.83-7.76 (m, 2 H), 7.72 (s, 1 H), 7.53 (d,
J=8.0Hz, 1 H),7.41 (d,J=8.4Hz 2 H), 7.07 (d, J=8.8 Hz, 2 H), 3.92 (s, 3 H), 2.65
(s, 3 H).

5.3 =R PR R IR T A S 57 AL R BT FT

PLUF A 18, 1b, 1 1¢, 1 1d, T 1e, [ 2f, 11 1, 120 1k, 2110, 1 1m, 12 1n, 2 10, 1 and
1pPT SR A SR 6 75 V25 A B

BRI T NARIERE R TS T

A 5-methoxy-2-((4-methoxyphenyl)ethynyl)-1,1'-biphenyl (1g)

MeQO

MeO
W eV,

B(OH),

5 mol% Pd(PPhs),
\\ i @ 6 equiv. K,CO4 \\
EtOH:H,O:PhMe = 1:1:4
O reflux, 10 h, 50% O
OMe OMe
19
M 100 = A B9 T % = 00 ke 4K X N 2-Bromo-4-methoxy-1-((4-

methoxyphenyl)ethynyl)benzene (636 mg, 2 mmol), phenylboronic acid (492 mg, 4
mmol), Pd(PPh3)s (119 mg, 0.1 mmol), KoCOs (1.657 g, 12 mmol), EtOH (4 mL), H>O
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(4mL), A1 PhMe (16 mL). [AIA 3k e 37 R B In = B . [ W22 77 10
NE G SERR, RN EERE AT DU TLC A (e ik 88 L5 =50/1).
RBETE G A EIAR R IR R SRS T AT R SR K I IR SRR =
o (250 mL x 2). & IFANUHEE AP CKEREREE T8 2 /N, R )51 9ERS
BIVETER, e 28 R A0 T o dd P ZE 8T o . (BEMR: i R LB
= 50/1) 4> & )5 15 2] 4i 1% [ 4K 1g (630 mg, 50%); mp 94.1-94.6 °C (ethyl
acetate/petroleum ether). 'H NMR (400 MHz, CDCl3) 6 7.67 (d, J = 8.0 Hz, 2 H), 7.55
(d, J= 8.8 Hz, 1 H), 7.49-7.35 (m, 3 H), 7.24 (d, J = 8.4 Hz, 2 H), 6.95 (s, 1 H), 6.87
(dd, J = 8.8, 2.8 Hz, 1 H), 6.80 (d, J = 8.4 Hz, 2 H), 3.86 (s, 3 H), 3.79 (s, 3 H); 1°C
NMR (100 MHz, CDCl3) 0 159.3, 159.1, 145.1, 140.5, 133.8, 132.4, 129.2,127.7, 127 .4,
115.8, 114.7, 114.2, 113.8, 112.9, 90.6, 87.8, 55.3, 55.2; IR (neat) 1607, 1556, 1513,
1482, 1465, 1445 cm™; HRMS (ESI) caled for C2H1902 (M + H") 315.1380, found
315.1378.

THRFERKSRTEUETEFEIESR ERPE I
1) 4'-Methyl-2-((4-methoxyphenyl)ethynyl)-1,1'-biphenyl (1h)

W W,
B(OH), 5 mol% Pd(PPh3),
\\ + 6 equiv. K,CO4 \\
EtOH:H,0:PhMe = 1:1:4
Q reflux, 5 h, 82% O

OMe OMe
1h

The reaction of 1-bromo-2-((4-methoxyphenyl)ethynyl)benzene (1.436 g, 5 mmol), p-
tolylboronic acid (1.361 g, 10 mmol), Pd(PPhs)4 (293 mg, 0.25 mmol), K2COz3(4.436 g,
32 mmol), EtOH (10 mL), H20 (10 mL), and PhMe (40 mL) afforded 1h as a liquid
(1.226 g, 82%). '"H NMR (400 MHz, CDCl3) 6 7.64-7.51 (m, 3 H), 7.43-7.16 (m, 7 H),
6.80 (d, J = 8.4 Hz, 2 H), 3.75 (s, 3 H), 2.40 (s, 3 H); *C NMR (100 MHz, CDCl3) 6
159.5, 143.5, 137.7,137.1, 132.8, 132.7,129.4, 129.2, 128.6, 128.1, 126.7, 121.8, 115.7,
113.9, 92.1, 88.2, 55.2, 21.2; IR (neat) 1604, 1569, 1510, 1476, 1463, 1443 cm’';

HRMS (EI, 70 eV) calced for C22HisO (M") 298.1358, found 298.1365.
2) 4'-Bromo-2-((4-methoxyphenyl)ethynyl)-1,1'-biphenyl (1i)
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B(OH), 5 mol% Pd(PPh3),
AN + 6 equiv. K,CO4 AN
EtOH:H,0:PhMe = 1:1:4
Q reflux, 22 h, 62% Q
Br
OMe OMe

1i

1-lodo-2-((4-methoxyphenyl)ethynyl)benzene (431 mg, 1.4 mmol), (4-
bromophenyl)boronic acid (333 mg, 1.7 mmol), Pd(PPhz)4 (85 mg, 0.07 mmol), K2CO3
(1.152 g, 8.3 mmol) 7£ EtOH (2.8 mL), H.0 (2.8 mL) A PhMe (11.1 mL) H JxJvi
A A 10 (312 mg, 62%); mp 74.6-75.0 °C  (Pefisl: A/ MR 2 | 'H
NMR (400 MHz, CDCl3) 6 7.67-7.50 (m, 5 H), 7.40-7.22 (m, 5 H), 6.84 (d, J= 8.8 Hz,
2 H), 3.81 (s, 3 H); *C NMR (100 MHz, CDCl3) 6 159.6, 142.2, 139.6, 132.8, 131.03,
130.97,129.2,128.2,127.4,121.8,121.7,115.3, 114.0, 92.7, 87.6, 55.3; IR (neat) 1607,
1513, 1470 cm'; HRMS (EL 70 eV) calcd for C21HisOBr (M) 362.0306, found
362.0310.

SR RN AERPE IL

& B 9-(4-methoxyphenyl)phenanthrene (2a)"!

3 mol% Fe(OTf); Q

\\ CH3NO,, 60 °C

O 24 h, 95% O

OMe

OMe
1a 2a

SR, A 25 Z TR N 1a (57 mg, 0.2 mmol), Fe(OTf); (3 mg, 0.006
mmol) FIJE/K CHsNO2 (3 mL). BB 60 °C, s~ Wil ;e B EE (B
FEF): F vk R 2.5 =50/1), 24 /NI JE RRNE R, RN TERR . SO RS R
AR B GBI A LR e = 100/, 4SS BIFEALLS, 2a (54
mg, 95%). "H NMR (400 MHz, CDCl3) ¢ 8.75 (d, J = 8.0 Hz, 1 H), 8.70 (d, J = 8.4 Hz,
1 H), 7.94 (d, J=8.0 Hz, 1 H), 7.87 (d, J= 7.6 Hz, 1 H), 7.68-7.42 (m, 7 H), 7.04 (d, J
= 8.4 Hz, 2 H), 3.89 (s, 3 H).

THEWRE BRI PR 1 L.
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1) 9-(4-Ethoxyphenyl)phenanthrene (2b)"

3 mol% Fe(OTf)3

CH3NO,, 60 °C
O 24 h, 83% Q
OEt OFt
1b 2b

1b (59 mg, 0.2 mmol), Fe(OTf)s (3 mg, 0.006 mmol), 7£J5/K CH3NO, (3 mL) H /%
A A A4 2b (49 mg, 83%). 'H NMR (400 MHz, CDCl3) 6 8.80 (d, J=8.0 Hz, 1 H),
8.74 (d,J=8.0 Hz, 1 H), 8.00 (d, J= 8.4 Hz, 1 H), 7.91 (d, J= 8.8 Hz, 1 H), 7.73-7.53
(m, 5 H), 7.50 (d, J= 8.4 Hz, 2 H), 7.07 (d, J= 8.4 Hz, 2 H), 4.15 (q, J = 6.8 Hz, 2 H),
1.52 (t, J = 6.8 Hz, 3 H).

2) 9-(p-Tolyl)phenanthrene (2¢)"!

\ 3 mol% Fe(OTf); O
A CH3NO,, 60 °C

O 48 h, 41% O

1c 2c
1c (54 mg, 0.2 mmol), Fe(OTf); (3 mg, 0.006 mmol), £ 7K CH3NO2 (3 mL) H1/x
MNA R E AR 2¢ (22 mg, 41%). '"H NMR (400 MHz, CDCl;) 6 8.77 (d, J = 8.0 Hz, 1
H), 8.72 (d, J=8.4 Hz, 1 H), 7.94 (d, J= 8.0 Hz, 1 H), 7.88 (d, /= 7.6 Hz, 1 H), 7.70-
7.48 (m, 5 H), 7.44 (d, J= 8.0 Hz, 2 H), 7.33 (d, J= 8.0 Hz, 2 H), 2.48 (s, 3 H).
3) 9-Phenylphenanthrene (2d)!

\ 3 mol% Fe(OTf);
A CH3NO,, 60 °C

O 87 h, 38% O

1d 2d

1d (53 mg, 0.21 mmol), Fe(OTf)s (3 mg, 0.006 mmol), £ 57K CH3NO; (3 mL)
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S WA R E A 2d (20 mg, 38%). 'H NMR (400 MHz, CDCl3) 6 8.79 (d, J = 8.0 Hz, 1
H), 8.74 (d, J= 8.0 Hz, 1 H), 7.96-7.86 (m, 2 H), 7.72-7.58 (m, 4 H), 7.57-7.42 (m, 6

H).
4) 9-(4-Methoxyphenyl)-3-methylphenanthrene (2f)©!

\\ 3 mol% Fe(OTf)3
CH3NO,, 60 °C
O 36 h, 83%
15 OMe

1f (60 mg, 0.2 mmol), Fe(OTf)s (3 mg, 0.006 mmol), ETE7/K CHsNO2 (3 mL) /%
MA R E A 2F (50 mg, 83%). *H NMR (400 MHz, CDCl3) § 8.75 (d, J = 8.4 Hz, 1 H),
8.50 (s, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 1 H), 7.69-7.60 (m, 2 H),
7.56-7.39 (m, 4 H), 7.05 (d, J = 8.4 Hz, 2 H), 3.90 (s, 3 H), 2.64 (s, 3 H).

5) 3-Methoxy-9-(4-methoxyphenyl)phenanthrene (2g)

MeO

\ 3 mol% Fe(OTf);
A CH3NO,, 60 °C

O 36 h, 52%

OMe
1g 2g

The reaction of 1g (63 mg, 0.2 mmol), Fe(OTf); (5 mg, 0.01 mmol), 7EJ57/K CH3NO;
(3 mL) " Jx B A E & 29 (32 mg, 52%); mp 114.3-115.1 °C (ethyl
acetate/petroleum ether). '"H NMR (400 MHz, CDCl3) 6 8.69 (d, J = 8.0 Hz, 1 H), 8.09

MeO

(s, 1 H), 795 (d,J=8.0 Hz, 1 H), 7.81 (d, J= 8.4 Hz, 1 H), 7.69-7.59 (m, 2 H), 7.58-
7.50 (m, 1 H), 7.47 (d, J=8.0 Hz, 2 H), 7.27 (d, J=7.6 Hz, 1 H), 7.06 (d, J = 8.0 Hz,
2 H), 4.05 (s, 3 H), 3.91 (s, 3 H); 1*C NMR (100 MHz, CDCls) 6 158.8, 158.3, 135.9,
133.2,131.6,131.1, 129.9, 127.0, 126.8, 126.4, 126.3, 125.9, 122.8, 116.9, 113.6, 103.7,
55.4, 55.3; IR (neat) 1614, 1526, 1504, 1462, 1429 cm™; HRMS (ESI) calce for
C22H1902 (M + H") 315.1380, found 315.1370.
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6) 10-(4-Methoxyphenyl)-2-methylphenanthrene (2h)

\\ 3 mol% Fe(OTf);
CH3NO,, 60 °C
O 24 h, 91% Q
oM OMe
1h © 2h

The reaction of 1h (58 mg, 0.2 mmol), Fe(OTf)3 (5 mg, 0.01 mmol), 77K CHsNO;
(3 mL) M A A E K 2h (53 mg, 91%); mp 110.1-110.4 °C (ethyl
acetate/petroleum ether). *H NMR (400 MHz, CDCl3) 6 8.67 (t, J = 6.8 Hz, 2 H), 7.86
(d,J=7.6 Hz, 1 H), 7.71 (s, 1 H), 7.68-7.42 (m, 6 H), 7.06 (d, J = 7.6 Hz, 2 H), 3.92
(s, 3H), 2.48 (s, 3 H); *°C NMR (100 MHz, CDCls) § 158.8, 138.0, 136.1, 133.2, 131.4,
131.1, 131.0, 129.8, 128.4, 128.0, 127.4, 126.3, 126.2, 122.7, 122.2, 113.6, 55.3, 21.6;
IR (neat) 1608, 1512, 1486, 1453, 1439 cm™:; HRMS (EI, 70 eV) calcd for C22H150
(M™) 298.1358, found 298.1364.

7) 2-Bromo-10-(4-methoxyphenyl)phenanthrene (2i)

ases eges

3 mol% Fe(OTf);

CH3NO,, 60 °C
O 24 h, 97% Q
oM OMe
1i e 2i

The reaction of 1i (73 mg, 0.2 mmol), Fe(OTf)3 (3 mg, 0.006 mmol), 7E57K CH3NO-
(3 mL) " Jx B A [ K 20 (71 mg, 97%); mp 143.6-143.7 °C (ethyl
acetate/petroleum ether). *H NMR (400 MHz, CDCl3) 6 8.59 (d, J = 7.6 Hz, 1 H), 8.55
(d, J=9.2 Hz, 1 H), 8.05 (s, 1 H), 7.84 (d, J = 7.2 Hz, 1 H), 7.69 (dd, J = 8.8, 2.0 Hz,
1 H), 7.66-7.54 (m, 3 H), 7.41 (d, J = 8.8 Hz, 2 H), 7.04 (d, J = 8.4 Hz, 2 H), 3.88 (s, 3
H); 3C NMR (100 MHz, CDCl3) 6 159.2, 137.4, 132.9, 132.2, 131.5, 131.0, 129.4,
129.34, 129.26, 129.1, 128.6, 128.5, 127.1, 126.8, 124.6, 122.3, 120.8, 113.9, 55.3; IR
(neat) 1612, 1507, 1482, 1439 cm™; HRMS (EI, 70 eV) calcd for Ca1H1sBrO (MY)

362.0301, found 362.0307.
8) 2-Hydroxy-10-(4-methoxyphenyl)-6-methylphenanthrene (2j)*
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ases (-on
\\ 3 mol% Fe(OTf)3 O
CH3NO,, 60 °C
O 48 h, 54%
1 OMe

The reaction of 1j (63 mg, 0.2 mmol), Fe(OTf); (5 mg, 0.01 mmol), 7£F7/K CH;NO,

(3mL) W NARE AR 2§ (34 mg, 54%). 'TH NMR (400 MHz, CDCl3) 6 8.64 (d, J =
8.8 Hz, 1 H), 8.38 (s, 1 H), 7.74 (d, J= 8.0 Hz, 1 H), 7.59 (s, 1 H), 7.44 (d, J= 8.4 Hz,
2 H),7.37(d,J=8.0 Hz, 1 H), 7.24 (s, 1 H), 7.21 (dd, J= 8.8, 2.8 Hz, 1 H), 7.04 (d, J
= 8.8 Hz, 2 H), 3.90 (s, 3 H), 2.62 (s, 3 H).

9) 10-(4-Methoxyphenyl)-2,6-dimethylphenanthrene (2k)!

\ 3 mol% Fe(OTf)3 Q
\ CH3NO,, 60 °C
O 24 h, 63%
OMe

2k

The reaction of 1k (64 mg, 0.2 mmol), Fe(OTf)s (5 mg, 0.01 mmol), /£ 57K CH3NO;
(3 mL) M AERE AR 2k (40 mg, 63%). 'H NMR (400 MHz, CDCls) 6 8.64 (d, J
=8.4Hz, 1 H), 8.46 (s, 1 H), 7.75 (d,J=8.0 Hz, 1 H), 7.69 (s, 1 H), 7.59 (s, 1 H), 7.49-
7.43 (m, 3 H), 7.40 (d, J=8.0 Hz, 1 H), 7.05 (d,J= 7.6 Hz, 2 H), 3.92 (s, 3 H), 2.63 (s,
3 H), 2.47 (s, 3 H).

10) 2-Bromo-10-(4-methoxyphenyl)-6-methylphenanthrene (21)*!

OaWs )
\ 3 mol% Fe(OTf)3 O
\ CH3NO,, 60 °C
O 36 h, 77%
OMe

2|
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The reaction of 11 (75 mg, 0.2 mmol), Fe(OTf)s (5 mg, 0.01 mmol), 7EJC/K CH3NO»
(3 mL) " A kAR 21 (58 mg, 77%). 'H NMR (400 MHz, CDCls) & 8.60 (d, J
=8.8 Hz, 1 H), 8.43 (s, 1 H), 8.05 (s, 1 H), 7.77 (d, J= 8.4 Hz, 1 H), 7.72 (dd, J = 8.8,
2.0 Hz, 1 H), 7.64 (s, 1 H), 7.50-7.39 (m, 3 H), 7.07 (d, J = 8.8 Hz, 2 H), 3.92 (s, 3 H),

2.64 (s, 3 H).
11) 2-Methoxycarbonyl-10-(4-methoxyphenyl)-6-methylphenanthrene (2m)!?!

Cy~0)-ooom (oo

\ 3 mol% Fe(OTf);

CH3NO,, 60 °C
O 120 h, 93% O

OMe

1m OMe 2m

The reaction of 1m (71 mg, 0.2 mmol), Fe(OTf); (3 mg, 0.006 mmol), 7t J5/K
CH3NO: (3 mL) 1/ AR E 1A 2m (66 mg, 93%). "H NMR (400 MHz, CDCl3) 6
8.79 (d,J=8.8 Hz, 1 H), 8.67 (s, 1 H), 8.51 (s, 1 H), 8.24 (d, J= 8.8 Hz, 1 H), 7.80 (d,
J=8.0 Hz, 1 H), 7.68 (s, 1 H), 7.53-7.42 (m, 3 H), 7.07 (d, J= 8.4 Hz, 2 H), 3.92 (s, 6
H), 2.64 (s, 3 H).

12) 10-(4-Methoxyphenyl)-6-methyl-2-cyanophenanthrene (2n)"*!

Q O N CQO CN
N\ .

3 mol% Fe(OTf);
CH3NO,, 60 °C

O 36 h, 50% Q

OMe

OMe
1n 2n

The reaction of 1n (65 mg, 0.2 mmol), Fe(OTf)s (5 mg, 0.01 mmol), 7£J57/K CH3NO;
(3 mL) TN AEREE A 2n (32 mg, 50%). '"H NMR (400 MHz, CDCls) § 8.82 (d, J
=8.8 Hz, 1 H), 8.48 (s, 1 H), 8.27 (s, 1 H), 7.82 (d, J=7.6 Hz, 2 H), 7.73 (s, 1 H), 7.54
(d,J=8.4Hz, 1 H), 7.42 (d, J= 7.2 Hz, 2 H), 7.08 (d, J = 7.6 Hz, 2 H), 3.93 (s, 3 H),
2.66 (s, 3 H).

13) 2,6-Dimethyl-10-(4-methylphenyl)phenanthrene (20)"
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3 mol% Fe(OTf)3
CH3NO,, 60 °C

O 36 h, 41% Q

10 20
The reaction of 10 (59 mg, 0.2 mmol), Fe(OTf)s (4 mg, 0.008 mmol), 7EJC/K CH3NO;
(3 mL) M AERE AR 20 (24 mg, 41%). 'H NMR (400 MHz, CDCl3) 0 8.64 (d, J
—8.4Hz, 1 H), 8.46 (s, 1 H),7.75 (d,.J= 8.4 Hz, 1 H), 7.69 (s, 1 H), 7.59 (s, 1 H), 7.51-
7.37 (m, 4 H), 7.33 (d, J = 7.2 Hz, 2 H), 2.63 (s, 3 H), 2.48 (s, 3 H), 2.47 (s, 3 H).
14) 10-(4-Methylphenyl)-6-methyl-2-acetylphenanthrene (2p)!*!

3 mol% Fe(OT); O
CH3NO,, 60 °C
48 h, 52%

2p

The reaction of 1p (66 mg, 0.2 mmol), Fe(OTf); (4 mg, 0.008 mmol), 7 J;/K
CH3NO, (3 mL) " N A A 2p (34 mg, 52%). '"H NMR (400 MHz, CDCl3) 6
8.81(d,J=8.4 Hz, 1 H), 8.57 (s, 1 H), 8.53 (s, 1 H), 8.20 (d, /= 8.4 Hz, 1 H), 7.81 (d,
J=84Hz, 1H),7.71 (s, 1 H),7.51 (d, J=8.0 Hz, 1 H), 7.45 (d, J= 7.6 Hz, 2 H), 7.35
(d, J=7.2 Hz, 2 H), 2.66 (s, 3 H), 2.61 (s, 3 H), 2.49 (s, 3 H).

15) The gram-scale reaction of 1al),

\ 3 mol% Fe(OTf),
A CH3NO,, 60 °C

O 24 h, 81%

OMe
1a 2a
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The reaction of la (1.036 g, 3.6 mmol), Fe(OTf)s (55 mg, 0.11 mmol), 7E J57K
CH3NO> (54 mL) " AR B 283 (839 mg, 81%).

5.4 =9 FREARRM AL KR 2T N 6 3F L R R FT

BT 10 I R v B BTG IEON K E A 8-10 em RO = (1 m strip x 2,
Greethink 5050, 12 V/m). Fr& i) 'H (400 MHZ), '3C (100 MHZ) "°F (376 MHz)J
J£ LA CDCls 8¢ DMSO-d 1FENTARRFITE AVANCE 111 400 2 SLHR A
EM . EOPERIE (ED 27 Water GCT CA176 JREAX EMER . &0 H R i
(ESD #7F Bruker Daltonics APEXIII™ ESI-FTICRMS JFit {3 _FillE ). 15
Je FH WRS-2 BUE A E 1, 2LAMUERI S 2 Avatar 360 i BLIH AR #2740
TEA
FBE—. Ak 1-(o-Tolyl)-3-(p-tolyl)prop-2-yn-1-one (1a)*!

0 I 1.2 equiv. ZnCl, o

0.5 mol% Pd(PPhs),
Cl
* O %
©ik NEts, rt O

1h, 85%

1a

ZnCl, (164 mg, 1.2 mmol) 1 NEt; (0.3 mL) AH4KMAZ]—A> SmL ELEH, =
TR HEEE 10 080, SRJE A 2-H1 E2R % &(0.13 mL, 1 mmol), 4- ALK £ B
(0.13 mL, 1 mmol) A1 = ZK I 4T PA(PPhs)s (6 mg, 0.005 mmol)7E =i N FE .
IR FE I AR AR RIFA): Al LR 4BE=50:1) fillfE 2 >N
JE N IE . ZJE R S R P INABREREAN AT IR, LR CFRZEH(S mL x
3), AHLER 7 FHIC/AKBRBR LT, BR 2S5, I e AT E A CHeisn: Ak
LR CTFE=300:1) 7 ES4fifl, 13 21WAA™ i 1a (200 mg, 85%).

'H NMR (400 MHz, CDCl3) § 8.27 (d, J= 7.6 Hz, 1 H), 7.61 (d, J = 8.8 Hz, 2 H), 749-
7.39 (m, 1 H), 7.35 (t, J=7.4 Hz, 1 H), 7.26 (d, J= 8.4 Hz, 1 H), 6.92 (d, /= 8.8 Hz, 2
H), 3.85 (s, 3 H), 2.67 (s, 3 H).

THEFH RIS BRI ERE R .
(1) 3-(4-Nitrilephenyl)-1-(o-tolyl)prop-2-yn-1-one (1b)
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O | | 1.2 equiv. ZnCl, O

: :U\ 0.5 mol% Pd(PPhs),
cl .
NEts, rt O
CN

4 h, 64%

CN 1b
2-Methylbenzoyl chloride(154 mg, 1 mmol), 4-ethynylbenzonitrile(127 mg, 1 mmol),
ZnCly (164 mg, 1.2 mmol), Pd(PPh3)s (6 mg, 0.005 mmol)All NEt3 (0.3 mL)H sz i A4
R A7 5 1b (1.106 g, 64%). "H NMR (400 MHz, CDCl3) 6 8.25 (d, J = 7.6 Hz, 1
H), 7.78-7.64 (m, 4 H), 7.53-7.45 (m, 1 H), 7.41-7.33 (m, 1 H), 7.29 (d, J= 7.6 Hz, 1
H), 2.67 (s, 3 H); 3*C NMR (100 MHz, CDCl3) 6 179.0, 140.8, 135.1, 133.4, 133.3,
133.1, 132.3, 132.2, 126.0, 125.2, 117.9, 113.8, 90.8, 88.4, 21.9; IR (neat) 2238, 2200,
1646, 1601, 1570, 1496, 1453, 1311 cm™'; HRMS (EI, 70 eV) calcd for Ci7H11NO
245.0841, found 245.0833.

(2) 4,4-Dimethyl-1-(o-tolyl)pent-2-yn-1-one (1d)'¥

1.2 equiv. ZnCl, o

0 [
0.5 mol% Pd(PPhs),
Cl
@ \ N

NEt,, rt
1 h, 49%

1d

2-Methylbenzoyl chloride(154 mg, 1 mmol), 3,3-dimethylbut-1-yne (82 mg, 1 mmol),
ZnCl, (164 mg, 1.2 mmol), PA(PPh3)s (6 mg, 0.005 mmol)F! NEt; (0.3 mL)+H s N A
BB 1d (214 mg, 49%). 'H NMR (400 MHz, CDCl;) 6 8.15 (d, J = 8.8 Hz, 1
H), 7.46-7.38 (m, 1 H), 7.35-7.28 (m, 1 H), 7.23 (d,J=7.6 Hz, 1 H),2.62 (s, 1 H), 1.36
(s, 3 H).

SBE . Ak 3-Cyclopropyl-1-(o-tolyl)prop-2-yn-1-one (1¢)!*!

o) | | 2 mol% Cul )
0.4 mol% PdCl,(PPh3),
Cl
. X
©f\ i EtsN, rt
11 h, 75%
1c

AR B (0.85 mL, 10 mmol), MALIFHT (38 mg, 0.2 mmol), 5 =F<FE/k
ME (28 mg, 0.04 mmol), —Z %20 mL) FH4EMAE]—4 100 mL ] Schlenk i
H, RGOSR R N 2- ORI S (1.5 mL, 10 mmol). S BifA FRid i
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FERSAR SRR CRIFR: fAbE: L8R AFE=50:1) KTE 11 AN/ G RV 2L,
Z G R B R AN A G B AT K, O CBEZERL (15 mLx 3), A HLEB
ST KR EREE T4, By, iR EMT (BEli7): Al /R OHE
=100:1—50:1) 7 &4ifk, #3205 1 (1.384 g, 75%).

"H NMR (400 MHz, CDCl3) 6 8.10 (d, J= 8.0 Hz, 1 H), 8.39 (t, J= 8.0 Hz, 1 H), 7.32-
7.20 (m, 1 H), 7.19 (d, J=8.0 Hz, 1 H), 2.58 (s, 3 H), 1.51-1.42 (m, 1 H), 1.20-0.92 (m,
4 H).

TEY RIS BR _ITERE B .

1) 1-(o-Tolyl)hept-2-yn-1-one (1¢)*

0] | | 2 mol% Cul O
0.4 mol% PdCly(PPhj),
Cl
+ o %
©ij\ Et3N, rt
11 h, 69%
1e

2-Methylbenzoyl chloride(1.5 mL, 10 mmol), hex-1-yne (1.2 mL, 10 mmol), Cul (38
mg, 0.2 mmol), PACLx(PPhs), (28 mg, 0.04 mmol)#1 NEt; (20 mL) ™ 5 N A= B4 7=
i 1e (1.381 mg, 69%). '"H NMR (400 MHz, CDCl3) 6 8.19 (d, J = 8.0 Hz, 1 H), 7.42
(t, J=8.0 Hz, 1 H), 7.31 (t, J=7.6 Hz, 1 H), 7.23 (d, J= 7.6 Hz, 1 H), 2.62 (s, 3 H),
247 (t,J=7.2 Hz, 1 H), 1.70-1.42 (m, 2 H), 1.01-0.91 (m, 2 H), 0.95 (t, J= 7.6 Hz, 1
H).

2) 3-Cyclohexyl-1-(o-tolyl)prop-2-yn-1-one (1f)!¥

o) | | 2 mol% Cul )
0.4 mol% PdCl,(PPh
C| o 2( 3)2 %
+
EtsN, rt
11 h, 62%
1f

2-Methylbenzoyl chloride(1.5 mL, 10 mmol), ethynylcyclohexane (1.3 mL, 10 mmol),
Cul (38 mg, 0.2 mmol), PdCLa(PPhs) (28 mg, 0.04 mmol)F1 NEt; (20 mL)H Jz J3i A4
FOBAAR = 5 1F (1.381 mg, 69%). 'H NMR (400 MHz, CDCl3) § 8.19 (s, 1 H), 7.46-
7.38 (mz, 1 H), 7.35-7.26 (mz, 1 H), 7.22 (s, 1 H), 2.66 (s, 3 H), 1.94-1.88 (m, 2 H),
1.83-1.60 (m, 2 H), 1.59-1.57 (m, 3 H), 1.40-1.36 (m, 3 H).

SB,=. & 1-(3-Methylthiophen-2-yl)-3-phenylprop-2-yn-1-one (1g)'¥
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S COOH | | 1. (COCl),, DMF, DCM, 0 °C,4h N S
\ + %
2. Cul, Pd(PPhs)s, EtsN, t, 24 h \ |

19
23%

3-FEMEN 2-FR (2.133 g, 15 mmol) FEGRSEM FIAR]—/NTEK 100 mL
() Schlenk S NI A« 4R 5 I 10 mL T4 & F k¢, 75 0°C B FHieE,
ZJE FHEA Y I = NN - H IR E . 0°C MR THid:, 2R AR
HR IR EES0(1.9 mL, 22.5 mmol), $iiFE 2 AN/DNEF. e TBr 207115 21 3-F A0
2-FEOR B R ET S A 20 3- B AL -2-F BRI EUIA 10 mL B9 51
iR . 2K (1.1 mL, 10 mmol), 44 (38 mg, 0.2 mmol), &
TEORIEBEIE (28 mg, 0.04 mmol), —Z % (20 mL) FH4EIIAN—ASTHEE 100
mL (] Schlenk SR HT, 2 J5 22480 % FH (1) 3- A 4002 - F R ORI B U
FEE TR PR RBE RS CEIFR: Ak 48R Z88=50:1) &
15 24 AN/PB G RS2l . 2 J5 B RBAER R P IIAFRIRENIEATH K, LR LB
(S mLx 3), MRS HTCKBEREET 1R, BREWEN, @ rE R EH (Bl
A AEE: LR 4HE=200: 1) 4rE5aift, 524" 8 1gas aliquid (761 mg,
23%). '"H NMR (400 MHz, CDCl3) 6 7.67-7.60 (m, 2 H), 7.54 (d, J = 8.8 Hz, 1 H),
7.50-35 (m, 3 H), 6.98 (d, J= 8.8 Hz, 1 H), 2.68 (s, 3 H).

THEFIR RIS B =T ERE R -
1) 1-(3-Methoxy-2-methylphenyl)-3-(4-benzaldehyde)prop-2-yn-1-one (1h)

i It i
OH 1. (COCIl),, DMF, DCM, 0°C, 4 h O N
+
2. Cul, Pd(PPhg)s, EtsN, rt, 7.5 h

OMe OMe O CHO
CHO 1h
37%

3-Methoxy-2-methylbenzoic acid (1.664 g, 10 mmol), oxalyl chloride (1.3 mL, 15
mmol), JLi% DMF, 1 T 4] CHxCl, (10 mL) 54 %/ 7= & 3-methoxy-2-
methylbenzoyl chloride. 3-Methoxy-2-methylbenzoyl chloride, 4-
ethynylbenzaldehyde (1.310 g, 10 mmol), Cul (38 mg, 0.2 mmol), Pd(PPh3)Cl> (28
mg, 0.04 mmol), 1 NEt; (20 mL) 13%|[E{4& 1h (1.038 g, 37%); mp 124.1-124.8 °C
(ethyl acetate/petroleum ether). '"H NMR (400 MHz, CDCl3) 6 10.05 (s, 1 H), 7.91 (d,
J=7.6 Hz, 2 H), 7.83-7.74 (m, 3 H), 7.32 (t, /=8.0 Hz, 1 H), 7.09 (d, /= 8.0 Hz, 1 H),
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3.88 (s, 3 H), 2.52 (s, 3 H); 3*C NMR (100 MHz, CDCl3) 6 191.2, 179.7, 158.2, 137.0,
136.9, 133.3, 129.6, 126.3, 126.2, 124.4, 114.8, 91.0, 89.5, 55.9, 12.5; IR (neat) 2203,
1706, 1638, 1605, 1576, 1564, 1472, 1318, 1277, 1224, 1204, 1021 cm’'; HRMS (ESI)
calcd for C1sH1403 M + H") 279.1023, found 279.1016.
2) 1-(3-Methoxy-2-methylphenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one
(11
i I i
OH ) 1. (COCl),, DMF, DCM, 0 °C, 3.5 h O T
2. Cul, Pd(PPhs)y, EtsN, 1t, 19 h O
OMe OMe CF4

CFs 1i
45%

3-Methoxy-2-methylbenzoic acid (1.665 g, 10 mmol), oxalyl chloride (1.3 mL, 15
mmol), JL{#H DMF, 1T 4 CH.Cl (10 mL) 5 # 17 & 3-methoxy-2-
methylbenzoyl chloride. 3-Methoxy-2-methylbenzoyl chloride, 1-ethynyl-4-
(trifluoromethyl)benzene (1.701 g, 10 mmol), Cul (38 mg, 0.2 mmol), Pd(PPh3).Cl>
(28 mg, 0.04 mmol), 1 NEt; (20 mL)fF 2| FE A 1i (1.431 g, 45%); mp 95.6-96.1 °C
(ethyl acetate/petroleum ether). '"H NMR (400 MHz, CDCl3) 6 7.81 (d, J = 8.0 Hz, 1
H), 7.75 (d, J= 8.0 Hz, 2 H), 7.67 (d, J= 8.0 Hz, 2 H), 7.32 (t, /= 8.0 Hz, 1 H), 7.09
(d, J=8.0 Hz, 1 H), 3.88 (s, 3 H), 2.52 (s, 3 H); *C NMR (100 MHz, CDCl3) 6 179.7,
158.3,137.1, 133.0, 131.9, 129.0, 126.2, 125.6, 125.5, 124.4, 122.2, 114.8, 90.0, 89.3,
56.0, 12.5; "F NMR (376 MHz, CDCl3) & -63.1; IR (neat) 2202, 1651, 1635, 1610,
1575, 1461, 1440, 1317, 1276, 1262, 1170, 1129, 1063, 1029, 1014 cm™; HRMS (EI,
70 eV) calcd for Ci1sHi3F302 318.0868, found 318.0869.
3) 1-(4,5-Difluoro-2-methylphenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (1j)
S U R om
j@i‘\OH ) . (COCl),, DMF, DCM, 0°C, 2 h O T
F 2. Cul, Pd(PPhg)y, EtsN, 1t, 23 h F O
OMe 1j one
57%

4,5-Difluoro-2-methylbenzoic acid (2.535 g, 15 mmol), oxalyl chloride (2 mL, 22.5
mmol), JLi#H DMF, T % CHxCl (15 mL) 3 % 7= & 4,5-difluoro-2-
methylbenzoyl chloride. 4,5-Difluoro-2-methylbenzoyl chloride, 1-ethynyl-4-
methoxybenzene (1.323g, 10 mmol), Cul (38 mg, 0.2 mmol), Pd(PPh3).CL> (28 mg,
0.04 mmol), F1 NEt; (20 mL) 73 I[E & 1j (1.635 g, 57%); mp 128.2-129.0 °C (ethyl
acetate/petroleum ether). '"H NMR (400 MHz, CDCl3) 6 8.11 (t, J= 8.6 Hz, 1 H), 7.68-
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7.57 (m, 2 H), 7.08 (t, /= 8.2 Hz, 1 H), 6.98-6.91 (m, 1 H), 3.91-3.88 (s, 3 H), 2.64 (s,
3 H); *C NMR (100 MHz, CDCl3) § 177.2, 161.9, 153.8, 153.7, 151.1, 149.1, 149.0,
146.6, 138.2, 135.1, 132.3, 121.9, 121.7, 120.8, 120.6, 114.5, 111.6, 55.4, 21.3; °F
NMR (376 MHz, CDCls) 8 -130.59, -130.61, -130.62, -130.64, -130.65, -130.67, -
130.70,-140.49,-140.51, -140.52, -140.54, -140.55, -140.57,-140.58, -140.60; IR (neat)
3390, 2924, 2850, 2191, 1936, 1638, 1604, 1592, 1513, 1448, 1388, 1326, 1297, 1260,
1198, 1181, 1164, 1132, 1115, 1076, 1025, cm™'; HRMS (ESI) calcd for C17H2F202 (M
+H") 287.0875, found 287.0878.

4) 1-(4-Chloro-2-methylphenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (1k)

0
o Il

on 1. (COCI),, DMF, DCM, 0 °C, 4 h O X
.
2. Cul, Pd(PPhy)s, EtsN, 1t, 8 h Cl O
cl OMe

1k
49%

OMe

4-Chloro-2-methylbenzoic acid (1.712 g, 10 mmol), oxalyl chloride (1.3 mL, 15 mmol),
JLi% DMF, 145 CH,Cl, (10 mL) 753 4-chloro-2-methylbenzoyl chloride 1£ 4
FH77 i 4-Chloro-2-methylbenzoyl chloride, 1-ethynyl-4-methoxybenzene (1.331 g,
10 mmol), Cul (38 mg, 0.2 mmol), Pd(PPhs),Cl, (28 mg, 0.04 mmol), F1 NEt; (20 mL)
AR[E A 1k (1.395 g, 49%); mp 126.8-128.1 °C (ethyl acetate/petroleum ether). 'H
NMR (400 MHz, CDCl3) 9 8.20 (d, J = 8.4 Hz, 1 H), 7.60 (d, J = 8.0 Hz, 2 H), 7.32 (d,
J=8.4Hz, 1 H),7.26 (s, 1 H), 6.92 (d, J = 8.0 Hz, 2 H), 3.85 (s, 3 H), 2.64 (s, 3 H);
3C NMR (100 MHz, CDCl3) 6 178.6, 161.7, 142.2, 138.8, 135.0, 134.33, 134.26, 132.0,
126.0, 114.4, 111.8, 93.4, 88.1, 55.4, 21.7; IR (neat) 3077, 2972, 2206, 1638, 1609,
1558, 1513, 1445, 1314, 1201, 1110, 1036 cm™'; HRMS (EI, 70 eV) calcd for
C17H13Cl1O2 284.0604, found 284.0605.

SEI. &Kk 3-(4-Menthylphenyl)naphthalen-1-ol (2a)°]
(0] 0]
1 mol% Cu(OTf),
s - )
O Purple LED, THF, rt
24 h, 96% O
CN
CN

1b 2b

1b (49 mg, 0.2 mmol), Cu(OTf): (I mg, 0.002 mmol), and FE/KVUEMLIE (10 mL)
FHAEIMA—A T4/ 25 mL Schlenk B . RVAREZRAMG T, ETRA
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LED CRIEME) TRREHHAT R, RAA R R SR R ITH: A
fik: IR CHE=20:1) FFE 24 AN/ JE N2k BrZEs), wid rER i Z i
CHERFR: k. 4R 4 HE=50: 1-20: 1) 2 4ifh, BRAE 5 2b (47mg,
96%). '"H NMR (400 MHz, CDCl3) § 7.92 (d, J= 7.2 Hz, 1 H), 7.77-7.54 (m, 6 H), 7.46
(t, J=17.6 Hz, 2 H), 7.54-7.40 (m, 2 H), 4.07 (s, 1 H).

TE YR RIS BRI 5 ERE B -
1) 5-Methoxy-3-(4-benzaldehyde)naphthalen-1-o0l (2h)
0 OH

O S 1 mol% Cu(OTf), O O
O Purple LED, THF, rt
24 h, 73%
OMe CHO o OMe O
CHO

1h 2h

1h (56 mg, 0.2 mmol), Cu(OTf) (1 mg, 0.002 mmol), FIT45 THF (10 mL) 757
Wik 2h (41 mg, 73%). '"H NMR (400 MHz, DMSO-ds) 6 10.43 (s, 1 H), 10.10 (s, 1
H), 8.06 (d, /= 8.0 Hz, 2 H), 7.96 (d, J= 8.0 Hz, 3 H), 7.77 (d, J = 8.4 Hz, 1 H), 7.45
(t, J=8.2 Hz, 1 H), 7.28 (s, 1 H), 7.06 (d, J = 7.2 Hz, 1 H), 4.02 (s, 3 H); '*C NMR
(100 MHz, DMSO-dys) ¢ 193.2, 155.6, 154.4, 146.9, 136.6, 135.5, 130.8, 127.9, 126.8,
126.2,125.9, 114.6, 111.3, 107.9, 105.9, 56.1; IR (neat) 3306, 2936, 2831, 1695, 1602,
1565, 1509, 1462, 1404, 1263, 1210, 1173, 1067, 1040 cm™'; HRMS (EI, 70 V) calcd
for C1sH1403 278.0943, found 278.0937.

2) 5-Methoxy-3-(4-(trifluoromethyl)phenyl)naphthalen-1-ol (2i)

9 OH
O S 1 mol% Cu(OTf), O O
O Purple LED, THF, rt
24 h, 72%
CFs ° OMe O
CFs

1i 2i

1i (64 mg, 0.2 mmol), Cu(OTf): (1 mg, 0.002 mmol), FIT-1&f) THF (10 mL)75 21| [#
A& 2i (46 mg, 72%); mp 172.3-172.9 °C (ethyl acetate/petroleum ether). '"H NMR (400
MHz, DMSO-ds) 6 10.44 (s, 1 H), 7.95 (d, J = 8.0 Hz, 3 H), 7.89 (d, J = 8.4 Hz, 2 H),
7.77(d,J = 8.4 Hz, 1 H), 7.45 (t, J = 8.0 Hz, 1 H), 7.25 (s, 1 H), 7.06 (d, J= 7.6 Hz, 1
H), 4.03 (s, 3 H); '3C NMR (100 MHz, DMSO-ds) 6 155.5, 154.4, 145.2, 136.3, 128.0,
126.8,126.4,126.3,126.0,125.7,114.6, 111.0, 107.9, 105.8, 56.1; ’F NMR (376 MHz,
DMSO-ds) 0 -60.8. IR (neat) 2938, 2837, 1619, 1600, 1513, 1462, 1402, 1330, 1269,

1170, 1113, 1067, 1038, 1014 cm™; HRMS (ESI) caled for CigHi3F302, (M - HY)
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317.0793, found 317.0784.
3) 6,7-Difluoro-3-(4-methoxyphenyl)naphthalen-1-ol (2j)

F O T 1 mol% Cu(OTf), F O O
F O Purple LED, THF, rt .
OMe 24 h, 86% O
OMe

1j 2j

1j (57 mg, 0.2 mmol), Cu(OTf)2 (1 mg, 0.002 mmol), AT THF (10 mL) 757
[E4A 2§ (49 mg, 86%); mp 158.1-159.0 °C (ethyl acetate/petroleum ether). 'H NMR
(400 MHz, DMSO-ds) 6 10.59 (s, 1 H), 7.99-7.85 (m, 2 H), 7.71-7.58 (m, 3 H), 7.19 (s,
1 H), 7.09 (d, J = 8.8 Hz, 2 H), 3.84 (s, 3 H); 3*C NMR (100 MHz, DMSO-dj) § 159.5,
153.6,151.1, 151.0, 149.7, 149.5, 148.7, 148.5, 147.2,147.1, 139.2, 132.6, 132.3, 132.2,
120.52, 120.47, 115.2, 114.8, 114.2, 114.0, 108.9, 108.7, 107.7, 55.5; ’F NMR (376
MHz, DMSO-ds) 6 -138.06, -138.085, -138.092, -138.12, -138.14, -138.15, -138.17,
-139.28, -139.305, -139.314, -139.34, -139.36, -139.37, -139.40; IR (neat) 3059, 2838,
1613, 1587, 1513, 1493, 1402, 1287, 1249, 1182, 1145,1031 cm™; HRMS (EI, 70 eV)
calcd for C17H12F202 286.0805, found 286.0807.

4) 6-Chloro-3-(4-methoxyphenyl)naphthalen-1-ol (2k)
Q OH

1 mol% Cu(OTf
s rerradl OO
Purple LED, THF, rt
cl O y 24 h, 88% cl O
OMe OMe

1k 2k

1k (57mg, 0.2 mmol), Cu(OTf), (I mg, 0.002 mmol), 1T THF (10 mL) 757
[E 44 2k (50 mg, 88%), mp 163.8-164.4 °C (ethyl acetate/petroleum ether). '"H NMR
(400 MHz, DMSO-ds) 6 10.49 (s, 1 H), 8.14 (d, /= 8.8 Hz, 2 H), 8.00 (s, 1 H), 7.43 (d,
J=8.8Hz, 1 H), 718 (s, 1 H), 7.11 (d, J = 8.8 Hz, 2 H), 3.85 (s, 3 H); *C NMR (100
MHz, DMSO-ds) 6 159.6, 154.2,139.9, 136.0, 132.8, 131.7, 128.4, 126.6, 125.2, 124.8,
122.3, 115.1, 114.9, 107.9, 55.7; IR (neat) 2836, 1630, 1610, 1592, 1577, 1504, 1389,
1283, 1246, 1183, 1090, 1030 cm™'; HRMS (EI, 70 eV) calcd for C17H13C10, 284.0604,
found 284.0609

5) 3-(4-Methoxyphenyl)-4-methylnaphthalen-1(4H)-one (21)
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1 mol% Cu(OTf),

IS
O Purple LED, THF, rt

24 h, 83%

11 (53 mg, 0.2 mmol), Cu(OTf), (1 mg, 0.002 mmol), FITJ& ) THF (10 mL) 7533
WK 21 (43 mg, 83%). 'H NMR (400 MHz, CDCl3) ¢ 7.88 (d, J = 7.6 Hz, 1 H), 7.65-
7.56 (m, 4 H), 7.54 (d, J=8.0 Hz, 1 H), 7.41 (t, J="7.6 Hz, 1 H), 6.97 (d, J=8.8 Hz, 2
H), 4.35 (q, J= 6.8 Hz, 1 H), 3.85 (s, 3 H), 1.42 (d, J= 7.0 Hz, 3 H).

6) 3-(4-Methoxyphenyl)-4-methylnaphthalen-1(4H)-one (21)

1 mol% Cu(OTf),

IS
O Purple LED, THF, rt

24 h, 75%

1m (56 mg, 0.2 mmol), Cu(OTf) (1 mg, 0.002 mmol), AT THF (10 mL) 753
AR 2m (42 mg, 75%). *H NMR (400 MHz, CDCl3) § 7.86 (d, J = 7.6 Hz, 1 H), 7.71
(s,1H),7.68-7.49 (m, 4 H), 7.40 (t, J=7.2Hz, 1 H), 6.97 (d, J = 7.8 Hz, 2 H), 3.85 (s,
3 H), 1.59 (s, 6 H).

7) 3-(4-Methoxyphenyl)-4-methylnaphthalen-1(4H)-one (2na) and 2-benzylidene-
3-phenyl-2,3-dihydro-1H-inden-1-one (2nb)

0 o)
1 mol% Cu(OTf),
IS 1
O Purple LED, THF, rt

24 h

Ph Ph
1n 2na 2nb
47% 32%

1n (59 mg, 0.2 mmol), Cu(OT), (1 mg, 0.002 mmol), AT THF (10 mL) 53
& 44 2na (28 mg, 47%). *H NMR (400 MHz, CDCl3) § 8.03 (d, J = 7.6 Hz, 2 H), 7.90
(d,J=7.8Hz, 1 H), 7.56 (t, J = 7.3 Hz, 1 H), 7.49-7.14 (m, 10 H), 6.77 (s, 1 H), 5.09
(s, 1 H).
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[f 44 2nb(19 mg, 32%). 'H NMR (400 MHz, CDCls) 5 7.97 (d, J = 7.6 Hz, 1 H), 7.88
(d,J=1.9 Hz, 1 H), 7.56 (t, J= 7.5 Hz, 1 H), 7.5-7.46 (m, 2 H), 7.42 (, J= 8.8 Hz, 2
H), 7.29-7.21 (m, 7 H), 7.16-7.12 (m, 1 H), 5.38 (s, 1 H).
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5.5 2% 3CHR
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BARE EXEE5RE

ARSI T Sy IR 5 R IR BC AP B n-< Jm AL &, ATiE e, Al 4%
SRR R B, W IR AT — R TN RIbRE, 8 I A [
SR, SERCT AN B MR AL RO Bk 71 A 0T S OB, BT AR
ANFE RE IR IESRATA D . R, ASCHE/INHZ ATt Fe TARSEA b, e T
G PR R AR A R BRI T A I USE B T 2RI A A o JE T ARSI AL
FATHUAS T BN — 28R R .

(1) L e 3 ks 2 Wi, FATEh AR 1 — il B RIT R M % 5
B2 AICL AL IR 7 5 WA T B OB e X RNHEAT | — R B R & 1t
FC AR Ja KL =R AR AL R 07 e S BLEAT A N B RERT A 2k, e —
S V0 R A2 S SR PR L Pt A B (R B o S (R A7 3B B S LI 7
FATFEH 1 2 BT =980 R IR B AR A P S 07 ZE AU A R ) B LT

5 mol% AICI,

R
avet e
N\ CH,Cl, g

R1

R1
1 2

(2) BT EBRTR BRI T WA DT AT, FATFH T —Fh
=8k Fe(OTh)s fEALIIHUE D T AT AL RN, M b =AU AL AR 2
T AT AN, BT E AR AR, R G ). £ H R
A BT T IR TS o B T8 AL 1 TS 8, A TRHZ S B3EAT 14 K,
FEY R BRI AT, RS AR T o TR Sy TR S I, 2N
FERATAEMAE TV AL B 2547 ML ST 3R Bt 1 DS mT AT 7572

@) )~
\ 3 mol% Fe(OTf)3 Q

A CH3NO,, 60 °C

/o) ()

1 2

-
’

(3) FEZ R /NARIRT T TARSERE b, BATARE T b =5 R R A (AL PR
Bkt NI RONL . FERT IO IS T, <1 IR SR IR IR LRI SR 50
4 Norrish IT 2 Yeb 2z [ N, 2 Ja BAHFE B RS a4, I eSS b fe] R 7E
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=9 PR AR A AT N R AT NI, AR -2 AT AN . ROBLRENS TR
SR A R AL TR AR .
" OH

R? O A Czltj.rrcjzli(lc_)itf))z R2 OO
O R THF } O
R1
RIMEZ, NP IRERE 5 IR T REER SOV, £4 )5 1 TAE
L B8y SR AL T BB AN FA e A1 1 S B A AT AR SRR AT IR E . A,
R PR R AR AL IR 201 N DGR SN RIE ST IR T AT AN B A, X
R4 Ja — B [ FRATTHI 78 /N B 5277 1
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